Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-14T14:23:18.288Z Has data issue: false hasContentIssue false

SPLICE: a synthetic paid loss and incurred cost experience simulator

Published online by Cambridge University Press:  23 May 2022

Benjamin Avanzi
Affiliation:
Centre for Actuarial Studies, Department of Economics, University of Melbourne, VIC 3010, Australia
Greg Taylor*
Affiliation:
School of Risk and Actuarial Studies, UNSW Australia Business School, UNSW Sydney, NSW 2052, Australia
Melantha Wang
Affiliation:
School of Risk and Actuarial Studies, UNSW Australia Business School, UNSW Sydney, NSW 2052, Australia
*
*Corresponding author. E-mail: [email protected]

Abstract

In this paper, we first introduce a simulator of cases estimates of incurred losses called SPLICE (Synthetic Paid Loss and Incurred Cost Experience). In three modules, case estimates are simulated in continuous time, and a record is output for each individual claim. Revisions for the case estimates are also simulated as a sequence over the lifetime of the claim in a number of different situations. Furthermore, some dependencies in relation to case estimates of incurred losses are incorporated, particularly recognising certain properties of case estimates that are found in practice. For example, the magnitude of revisions depends on ultimate claim size, as does the distribution of the revisions over time. Some of these revisions occur in response to occurrence of claim payments, and so SPLICE requires input of simulated per-claim payment histories. The claim data can be summarised by accident and payment “periods” whose duration is an arbitrary choice (e.g. month, quarter, etc.) available to the user. SPLICE is built on an existing simulator of individual claim experience called SynthETIC (introduced in Avanzi et al. 2021b, Insurance: Mathematics and Economics, 100, 296–308), which offers flexible modelling of occurrence, notification, as well as the timing and magnitude of individual partial payments. This is in contrast with the incurred losses, which constitute the additional contribution of SPLICE. The inclusion of incurred loss estimates provides a facility that almost no other simulators do. SPLICE is is a fully documented R package that is publicly available and open source (on CRAN). SPLICE, combined with SynthETIC, provides 11 modules (occurrence, notification, etc.), any one or more of which may be re-designed according to the user’s requirements. It comes with a default version that is loosely calibrated to resemble a specific (but anonymous) Auto Bodily Injury portfolio, as well as data generation functionality that outputs alternative data sets under a range of hypothetical scenarios differing in complexity. The general structure is suitable for most lines of business, with some reparameterisation.

Type
Actuarial Software
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Institute and Faculty of Actuaries

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Mudafer, M.T., Avanzi, B., Taylor, G.C. & Wong, B. (2021). Stochastic loss reserving with mixture density neural networks. Insurance: Mathematics and Economics, 105, 144174.Google Scholar
Avanzi, B., Taylor, G. & Wang, M. (2021a). SPLICE: synthetic paid loss and incurred cost experience (splice) simulator. Available online at the address https://CRAN.R-project.org/package=SPLICE.CrossRefGoogle Scholar
Avanzi, B., Taylor, G., Wang, M. & Wong, B. (2021b). SynthETIC: an individual insurance claim simulator with feature control. Insurance: Mathematics and Economics, 100, 296308.Google Scholar
Avanzi, B., Taylor, G., Wang, M. & Wong, B. (2021c). SynthETIC: synthetic experience tracking insurance claims. Available online at the address https://CRAN.R-project.org/package=SynthETIC.Google Scholar
Bear, R., Shang, K. & You, H. (2020). cascsim: casualty actuarial society individual claim simulator. Available online at the address https://CRAN.R-project.org/package=cascsim.Google Scholar
CAS Loss Simulation Model Working Party (2007). Parameterizing the loss simulation model. Available online at the address https://www.casact.org/research/lsmwp/bsupaper.pdf.Google Scholar
CAS Loss Simulation Model Working Party (2011). Modeling loss emergence and settlement processes. Casualty Actuarial Societly E-Forum.Google Scholar
Coté, M.-P., Hartman, B., Mercier, O., Meyers, J., Cummings, J. & Harmon, E. (2020). Synthesizing property & casualty ratemaking datasets using generative adversarial networks.Google Scholar
De Felice, M. & Moriconi, F. (2019). Claim watching and individual claims reserving using classification and regression trees. Risks, 7(4), 136.CrossRefGoogle Scholar
Dutang, C. & Charpentier, A. (2019). CASdatasets: insurance datasets. Available online at the address http://cas.uqam.ca/.Google Scholar
Dutang, C., Goulet, V. & Pigeon, M. (2008). actuar: an R package for actuarial science. Journal of Statistical Software, 25(7), 38.Google Scholar
Embrechts, P. & Wüthrich, M.V. (2022). Recent challenges in actuarial science. Annual Review of Statistics and its Application, 9, 119140.CrossRefGoogle Scholar
Gabrielli, A. & Wüthrich, M.V. (2018). Individual claims history simulation machine. Risks, 6(2), 29.CrossRefGoogle Scholar
Harej, B., Gächter, R. & Jamal, S. (2017). Individual claim development with machine learning. Available online at the address http://www.actuaries.org/ASTIN/Documents/ASTIN_ICDML_WP_Report_final.pdf.Google Scholar
Mack, T. & Quarg, G. (2004). Munich Chain Ladder. Blätter der DGVFM, 26(4), 597630.Google Scholar
McGuire, G. (2007). Individual claim modelling of CTP data. In XIth Accident Compensation Seminar. Institute of Actuaries of Australia, Sydney, Australia.Google Scholar
McGuire, G., Taylor, G. & Miller, H. (2018). Self-assembling insurance claim models using regularized regression and machine learning. Variance (in press). Also in SSRN.CrossRefGoogle Scholar
Merz, M. & Wüthrich, M.V. (2010). Paid–incurred chain claims reserving method. Insurance: Mathematics and Economics, 46(3), 568579.Google Scholar
Taylor, G. (2019). Claim models: granular and machine learning forms. Risks, 7(3), 82.10.3390/risks7030082CrossRefGoogle Scholar
Taylor, G. & McGuire, G. (2004). Loss reserving with glms: a case study. Casualty Actuarial Society Discussion Paper Program, Applying and Evaluating Generalised Linear Models.Google Scholar
Taylor, G., McGuire, G. & Greenfield, A. (2003). Loss reserving: past, present and future, University of Melbourne Research Paper.CrossRefGoogle Scholar
Taylor, G., McGuire, G. & Sullivan, J. (2008). Individual claim loss reserving conditioned by case estimates. Annals of Actuarial Science, 3(1–2), 215256.10.1017/S1748499500000518CrossRefGoogle Scholar
Teugels, J.L. & Sundt, B. (Eds.) (2004). Encyclopedia of Actuarial Science. Chichester, UK: John Wiley & Sons, Ltd.10.1002/9780470012505CrossRefGoogle Scholar