Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T05:45:40.818Z Has data issue: false hasContentIssue false

Spring rotifer community structure in the Alcantara River (Sicily, Italy), using different mesh size nets: relation to environmental factors

Published online by Cambridge University Press:  14 November 2013

Lina Pilar Rodríguez
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
Antonia Granata
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
Letterio Guglielmo
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
Roberta Minutoli
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
Giacomo Zagami
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
Cinzia Brugnano*
Affiliation:
Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 31 S. Agata, Messina 98166, Italy
*
*Corresponding author: [email protected]
Get access

Abstract

The present study focus on some aspects of zooplankton structure in the Alcantara River (Sicily, Italy), in relation to environmental factors. Zooplankton samplings were performed in spring in four sites, located from up- to downstream along the river course. Four low-flow velocity station points were chosen along a transversal river section in each site. Samples were taken from all station points in the four sites by two different mesh sizes (55 and 100 μm) rectangular nets. Rotifer abundances were an order of magnitude higher in 55 μm mesh size samples than in 100 μm mesh size ones. The two communities also resulted significantly different (ANOSIM test, ρ=0.212; P=0.1%). Generally, low abundances (from 3470±5133 to 422±474 ind.m−3) were explained by low chlorophyll a concentration and the high-flow regime of this river. Rotifer dominated the zooplankton community. Cladocerans, copepods and nauplii occurred with considerably lower abundances than rotifers. However, the relative contributions of these taxa to total abundances depended on the mesh sizes used. Euchlanis and Adineta genera exhibited the highest abundances in the rotifer assemblage. Conductivity alone or in association with temperature and dissolved oxygen was the most important environmental factor affecting rotifer community distribution. Cephalodella sp., Lepadella sp. and Trichotria pocillum showed a high positive relation to pico-plankton, showing this fraction as a possible rotifer food item. This paper demonstrated a higher efficiency of the finest net to characterize riverine zooplankton community that increases from up to downstream in terms of abundances and diversity.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Cobelas, M., Rojo, C. and Angeler, D.G., 2005. Mediterranean limnology: current status, gaps and the future. J. Limnology, 64, 1329.CrossRefGoogle Scholar
Arora, J. and Mehra, N.K., 2003. Seasonal dynamics of rotifers in relation to physical and chemical conditions of the river Yamuna ( Delhi), India. Hydrobiologia, 491, 101109.CrossRefGoogle Scholar
Baranyi, C., Hein, T., Holarek, C., Keckeis, S. and Schiemer, F., 2002. Zooplankton biomass and community structure in a Danube River floodplain. Freshwater Biol., 47, 473482.CrossRefGoogle Scholar
Bass, J.A.B., Pinder, L.C.V. and Leach, D.V., 1997. Temporal and spatial variation in zooplankton populations in the River Great Ouse: an ephemeral food resource for larval and juvenile fish. River Res. Appl., 13, 245258.3.0.CO;2-P>CrossRefGoogle Scholar
Behncke, B., 2001. Volcanism in the southern Apennines and Sicily. In: Vai, G.B. and Martini, I.P. (eds.), Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basin, Kluwer Academic Publishers, Dordrecht, 105120.CrossRefGoogle Scholar
Beklioglu, M., Ince, Ö. and Tüzün, I., 2003. Restoration of Eutrophic Lake Eymir, Turkey, by biomanipulation undertaken following a major external nutrient control I. Hydrobiologia, 489, 93105.CrossRefGoogle Scholar
Bergamasco, B., Decembrini, F., Azzaro, F. and Caruso, G., 2010. Hydrological characterization and phytoplankton production in coastal waters at the Alcantara river mouth (Sicily). In: Guglielmo, L., Polo, M.J., Smoke, L. and Young, D. (eds.), Center for Integrative Mediterranean Studies (CIMS), VCU Rice Center, Richmond, Virginia. Ecological Water Quality Assessment of Alcantara, James and Guadalfeo Rivers using Bioindicators. Phase I – Alcantara River Study, April 2010. Data Rep. 1, 412. Google Scholar
Bērziņš, B. and Pejler, B., 1987. Rotifer occurrence in relation pH. Hydrobiologia, 147, 107116.CrossRefGoogle Scholar
Boix, D. and Sala, J., 2002. Riqueza y rareza de los insectos acuáticos de la laguna temporal de Espolla (Pla de l'Estany, Cataluña). Boletín de la Asociación Española de Entomología, 26, 4557.Google Scholar
Boix, D., Sala, J. and Moreno-Amich, R., 2001a. Succession of the macroinvertebrate community in a temporary pond. Ver. Int. Verein. Limnol., 27, 25862593.Google Scholar
Boix, D., Sala, J. and Moreno-Amich, R., 2001b. The faunal composition of Empolla pond ( NE Iberian Peninsula): the neglected biodiversity of temporary waters. Wetlands, 21, 577592.CrossRefGoogle Scholar
Boix, D., Gascón, S., Sala, J., Badosa, A., Brucet, S., Lopez-Flóres, R., Martinoy, M., Gifre, J. and Quintana, X.D., 2008. Patterns of composition and species richness of crustaceans and aquatic insects along environmental gradients in Mediterranean water bodies. Hydrobiologia, 597, 5369.CrossRefGoogle Scholar
Braioni, G. and Gelmini, D., 1983. Guide per il riconoscimento delle specie animali delle acque interne italiane. Rotiferi monogononti. (Consiglio Nazionale Delle Ricerche AQ/1/200: Italy), Vol. 23, 1179.
Branco, C.W.C., Esteves, F.A., Kozlowsky-Suzuki, B., 2000. The zooplankton and other limnological features of a humic coastal lagoon (Lagoa Comprida, Macaé, RJ) in Brazil. Hydrobiologia, 437, 7181.CrossRefGoogle Scholar
Bray, J.R. and Curtis, J.T., 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr., 27, 325349.CrossRefGoogle Scholar
Brown, A.V., Limbeck, R.L. and Schram, M.D., 1989. Trophic importance of zooplankton in streams with Alluvial Riffle and Pool Geomorphometry. Arch. Hydrobiol., 114, 349367.Google Scholar
Calbet, A., 2001. Mesozooplankton grazing impact on primary production: a global comparative analysis. Limnol. Oceanogr., 46, 18241830.CrossRefGoogle Scholar
Caron, D.A., Pick, F.R. and Lean, D.R.S., 1985. Chroococcoid cyanobacteria in Lake Ontario: vertical and seasonal distributions during 1982. J. Phycol., 21, 171175.CrossRefGoogle Scholar
Chalkia, E., Zacharias, I., Thomatou, A. and Kehayias, G., 2012. Zooplankton dynamics in a gypsum karst lake and interrelation with the abiotic environment. Biologia, 67, 151163.CrossRefGoogle Scholar
Chick, J.H. and Van Den Avyle, M.J., 1999. Zooplankton variability and larval striped bass foraging: evaluating potential match/mismatch regulation. Ecol. Appl., 9, 320334.CrossRefGoogle Scholar
Chick, J.H., Levchuk, A.P., Medley, K.A. and Havel, J.H., 2010. Underestimation of rotifer abundance a much greater problem than previously appreciated. Limnol. Oceanogr.: Methods, 8, 7987.CrossRefGoogle Scholar
Clarke, K.R. and Warwick, R.M., 2004. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation (2nd edn), Primer–E Ltd, Plymouth, UK.Google Scholar
Conde, J.M., Ramos, E. and Morales, R., 2004. El zooplancton como integrante de la estructura trófica de los ecosistemas lenticos. Ecosistemas, 13, 2329.Google Scholar
Conley, W.J. and Turner, J.T., 1991. Phytoplankton and zooplankton of the Westport River estuary, Massachusetts (USA). Hydrobiologia, 210, 225132.CrossRefGoogle Scholar
Crowe, J.H., 1971. Anhydrobiosis: an unsolved problem. Amer. Natural, 105, 563573.CrossRefGoogle Scholar
Das, M. and Panda, T., 2010. Water Quality and Phytoplankton Population in Sewage Fed River of Mahanadi, Orissa, India. J. Life Sci., 2, 8185.CrossRefGoogle Scholar
de Ruyter van Steveninck, E.D., Admiraal, W., Breebart, L., Tubbing, G.M.J., van Zanten, B., 1992. Plankton in the River Rhine: structural and functional changes observed during downstream transport. J. Plankton Res., 14, 13511368.CrossRefGoogle Scholar
Dolan, J.R. and Gallegos, C.L., 1991. Trophic coupling of rotifers, microflagellates, and bacteria during fall months in the Rhode River estuary. Mar. Ecol. - Prog. Ser., 77, 147156.CrossRefGoogle Scholar
Dolan, J.R. and Gallegos, C.L., 1992. Trophic role of planktonic rotifers in the Rhode River estuary, spring and summer, 1991. Mar. Ecol. - Prog. Ser., 85, 187199.CrossRefGoogle Scholar
Dussart, B., 1969. Les copépodes des Eaux Continentales D'europe Occidentale. Tomo II: Cyclopïdes et Biologie. In: Boubée, N. and Cie, . (eds.), Internationale Revue der gesamten Hydrobiologie und Hydrographie, Illustrated Cover, Paris, 1391971.Google Scholar
Eriksson, A.I., 2002. Can predation by net-spining caddids larvae (Trichoptera: Hydropsyche siltalai) cause longitudinal changes in zooplankton species composition in lake outlet streams? Arch. Hydrobiol., 153, 231244.CrossRefGoogle Scholar
Evans, M.S. and Sell, W.S., 1985. Mesh size and collection characteristics of 50 cm diameter conical plankton nets. Hydrobiologia, 122, 97104.CrossRefGoogle Scholar
Fernández Aláez, M., Fernández Aláez, C., Rodríguez, S. and Bécares, E., 1999. Evaluation of the state of conservation of shallow lakes in the province of Leon (Northwest Spain) using botanical criteria. Limnetica, 17, 107117.Google Scholar
Ferrari, I., Farabegoli, A. and Mazzoni, R., 1989. Abundance and diversity of planktonic rotifers in the Po River. Hydrobiologia, 186/187, 201208.CrossRefGoogle Scholar
Friedrich, G. and Pohlmann, M., 2009. Long-term plankton studies at the lower Rhine/Germany. Limnologica, 39, 1439.CrossRefGoogle Scholar
Gallienne, C.P. and Robins, D.B., 2001. Is Oithona the most important copepod in the world's oceans? J. Plankton Res., 23, 14211432.CrossRefGoogle Scholar
Gaughan, D.J. and Potter, I.C., 1995. Composition, distribution and seasonal abundance of zooplankton in a shallow, seasonally closed estuary in temperate Australia. Estuar. Coast. Shelf S., 41, 117135.CrossRefGoogle Scholar
Green, J., 1972. Freshwater ecology in the Mato Grosso, Central Brazil III. Associations of Rotifera in meander lakes of the Rio Suiá Missú. J. Nat. Hist., 6, 229241.CrossRefGoogle Scholar
Hartmut, A., Carola, S., Werner, S., 1990. Rotifers of the genus Synchaeta, an important component of zooplankton in the coastal waters of the Southern Baltic. Limnologica, 21, 233235.Google Scholar
Hoffman, W., 1977. The influence of abiotic environmental factors on population dynamics in planktonic rotifers. Arch. Hydrobiol. Beih., 8, 7783.Google Scholar
Holst, H., Zimmermann, H., Kausch, H., Koste, W., 1998. Temporal and Spatial Dynamics of Planktonic Rotifers in the Elbe Estuary during Spring. Est. Coast. Shelf Sci., 47, 261273.CrossRefGoogle Scholar
Hopcroft, R.R., Roff, J.C. and Lombard, D., 1998. Production of tropical copepods in Kingston Harbour, Jamaica: the importance of small species. Mar. Biol., 130, 593604.CrossRefGoogle Scholar
Horne, A.J. and Goldman, C.R., 1994. Limnology (2nd edn), McGraw-Hill, New York.Google Scholar
Hujare, M.S., 2005. Hydrobiological studies on some eater reservoirs of Hatkanangale Tahsil (Maharashtra). Ph.D. Thesis, Shivaji University, Kolhapur, India.
Hwang, J., Kumar, R., Dahms, H., Tseng, L. and Chen, Q., 2007. Mesh size affects abundance estimates of Oithona spp. (Copepoda, Cyclopoida). Crustaceana, 80, 827837.CrossRefGoogle Scholar
Istvánovics, V. and Honti, M., 2011. Phytoplankton growth in three rivers: the role of meroplankton and the benthic retention hypothesis. Limnol. Oceanogr., 56, 14391452.CrossRefGoogle Scholar
Jack, J.D., Thorp, J.H., 2002. Impacts of fish predation on an Ohio river zooplankton community. J. Plankton Res., 24, 119127.CrossRefGoogle Scholar
Jafari, N., Nabavi, S.M. and Akhavan, M., 2011. Ecological investigation of zooplankton abundance in the River Haraz, Northeaste Iran: impact of environmental variables. Arch. Biol. Sci. Belgrade, 63, 785798.CrossRefGoogle Scholar
Jurgens, K., Sibbe, O. and Jeppesen, E., 1999. Impact of metazooplankton on the composition and population dynamics of planktonic ciliates in a shallow, hypertrophic lake. Aquat. Microb. Ecol., 17, 6175.CrossRefGoogle Scholar
Keilin, D., 1959. The problem of anabiosis or latent life: history and current concept. Proc. R. Soc. Lond., 150, 149191.CrossRefGoogle ScholarPubMed
Kim, H.W. and Joo, G.J., 2000. The longitudinal distribution and community dynamics of zooplankton in a regulated large river: a case study of the Nakdong River (Korea). Hydrobiologia, 438, 171184.CrossRefGoogle Scholar
Kiss, K.T., Ács, É. and Kovács, A., 1994. Ecological observation on Skeletonema potamus (Weber) Hasle in the River Danube, near Budapest (1991–92, daily investigations). Hydrobiologia, 289, 163170.CrossRefGoogle Scholar
Klimowicz, H., 1981. The plankton of the river Vistula in the region of Warsaw in the years 1977–1979. Acta Hydrobiol., 23, 4767.Google Scholar
Kobayashi, T., 1997. Associations between environmental variables and zooplankton body masses in a regulated Australian river. Mar. Freshwater Res., 48, 523529.CrossRefGoogle Scholar
Kobayashi, T., Shiel, R.J., Gibbs, P. and Dixon, P.I., 1998. Freshwater zooplankton in the Hawkesbury-Nepean River: comparison of community structure with other rivers. Hydrobiologia, 377, 133145.CrossRefGoogle Scholar
Lair, N., 2006. A review of regulation mechanisms of metazoan plankton in riverine ecosystems: aquatic habitat versus biota. River Res. Appl., 22, 567593.CrossRefGoogle Scholar
Lair, N. and Reyes-Marchant, P., 1997. The potamoplankton of the Middle Loire and the role of the “moving littoral” in downstream transfer of algae and rotifers. Hydrobiologia, 356, 3352.CrossRefGoogle Scholar
Lopes, R.M., 1994. Zooplankton distribution in the Guarau River Estuary (South-eastern Brazil). Estuar. Coast. Shelf Sci., 39, 287302.CrossRefGoogle Scholar
Margalef, D.R., 1958. Information Theory in Ecology. Gen. Sys., 3, 3671.Google Scholar
Margaritora, F., 1983. Guide per il riconoscimento delle specie animali delle acque interne italiane. Cladoceri. (Consiglio Nazionale Delle Ricerche AQ/1/197: Italy), Vol. 22, 1169.
Martinoy, M., Boix, D., Sala, J., Gascón, S., Gifre, J., Argerich, A., De La Barrera, R., Brucet, S., Badosa, A., López-Flores, R., Méndez, M., Utge, J.M. and Quintana, X.D., 2006. Crustacean and aquatic insect assemblages in the Mediterranean coastal ecosystems of Empordá wetlands (NE Iberian peninsula). Limnetica, 25, 665682.Google Scholar
Meister, A., 1994. Untersuchungen zum Plankton der Elbe und ihrer größeren Nebenflüsse. Limnologica, 24, 153214.Google Scholar
Miracle, M.R., Alfonso, M.T. and Vicente, E., 2007. Fish and nutrient enrichment effects on rotifers in a Mediterranean shallow lake: a mesocosm experiment. Hydrobiologia, 593, 7794.CrossRefGoogle Scholar
Montesanto, B., Ziller, S., Danielidis, D. and Economou-Amilli, A., 2000. Phytoplankton community structure in the lower reach of a Mediterranean river ( Alikmon, Greece). Arch. Hydrobiol., 147, 171191.CrossRefGoogle Scholar
Mount, J., 2010. The Tuolumne River and its watershed. In: Mount, J. and Purdy, S. (eds.) Confluence: A Natural and human history of the Tuolumne River watershed, Department of Geology and Center for Watershed Science, University of California, Davis, California, 111.Google Scholar
Neves, I.F., Rocha, O., Roche, K.F. and Pinto, A.A., 2003. Zooplankton community structure of two marginal lakes of the River Cuiabá (Mato Grosso, Brazil) with analysis of rotifera and cladocera diversity. Braz. J. Biol., 63, 329343.CrossRefGoogle ScholarPubMed
Nogrady, T., Wallace, R.L. and Snell, T.W., 1993. Rotifera, Vol. 1. Biology, ecology and systematics. In: Nogrady, T. and Dumont, H.J. (eds.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing BV, The Hague, 142.Google Scholar
Özbay, H. and Altindag, A., 2009. Zooplankton abundance in the River Kars, Northeast Turkey: impact of environmental variables. Afr. J. Biotechnol., 8, 58145818.Google Scholar
Pace, M.L., Findlay, S.E.G. and Linds, D., 1992. Zooplankton in advective environments: the Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci., 4, 10601069.CrossRefGoogle Scholar
Paffenhöfer, G.A., 1998. Heterotrophic protozoa and small metazoa: feeding rates and prey–consumer interactions. J. Plankton Res., 20, 121134.CrossRefGoogle Scholar
Pantò, E., Zagami, G. and Guglielmo, L., 2007. Struttura de la comunità zooplanctonica del tratto terminale del Fiume Alcantara. Studi e ricerche nel bacino del fiume Alcantara. Atti Acquafest. Available online at: http://www.siciliaparchi.com/public/aquafest2007/abstractTema4_01ElenaPantò.pdf.
Pereira, R., Soares, A.M.V.M., Ribeiro, R. and Gonçalves, F., 2002. Assessing the trophic state of Linhos lake: a first step towards ecological rehabilitation. J. Environ. Manag., 64, 285297.CrossRefGoogle ScholarPubMed
Pielou, E.C., 1969. An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 285 p.Google Scholar
Piirsoo, K., Pall, P., Tuvikene, A. and Viik, M., 2008. Temporal and spatial patterns of phytoplankton in a temperate lowland river ( Emajõgi, Estonia). J. Plankton Res., 30, 12851295.CrossRefGoogle Scholar
Pitois, S.G., Shaw, M., Fox, C.J. and Frid, C.L.J., 2009. A new fine-mesh zooplankton time series from the Dove sampling station ( North Sea). J. Plankton Res., 31, 337343.CrossRefGoogle Scholar
Porter, K.G., 1995. Integrating the microbial loop and the classic food chain into a realistic planktonic food web. In: Polis, G.A. and Winemiller, K. (eds.), Food Webs: Integration of Patterns and Dynamics. Chapman and Hall, New York (US), 5159.Google Scholar
Reckendorfer, W., Keckeis, H., Winkler, G. and Schiemer, F., 1999. Zooplankton abundance in the River Danube, Austria: the significance of inshore retention. Freshwater Biol., 41, 583591.CrossRefGoogle Scholar
Reynolds, C.S., 1988. Potamoplankton: paradigms, paradoxes and prognoses. In: Round, F.E. (ed.), Algae and Aquatic Environment. Bioprest, Bristol, 285311.Google Scholar
Ricci, C., 1998. Anhydrobiotic capabilities of bdelloid rotifers. Hydrobiologia, 387/388, 321326.CrossRefGoogle Scholar
Ricci, C. and Balsamo, M., 2000. The biology and ecology of lotic rotifers and gastrotrichs. Freshwater Biol., 44, 1528.CrossRefGoogle Scholar
Robertson, B.A. and Hardy, E.R., 1984. Zooplankton of Amazonian lakes and rivers. In: Sioli, H. (ed.), The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin, W. Junk Publ., Netherlands, 337352.CrossRefGoogle Scholar
Romo, S., Miracle, M.R., Villena, M.J., Rueda, J., Ferriol, C. and Vicente, E., 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biol., 49, 15931607.CrossRefGoogle Scholar
Rueda, F., Moreno-Ostos, E. and Armengol, J., 2006. The residence time of river water in reservoirs. Ecol. Model., 191, 260274.CrossRefGoogle Scholar
Sabater, S., Artigas, J., Duran, C., Pardos, M., Romani, A.M., Tornes, E. and Ylla, I., 2008. Longitudinal development of chlorophyll and phytoplankton assemblages in a regulated large river (the Ebro River). Sci. Total Environ., 404, 196206.CrossRefGoogle Scholar
Sampson, S.J., Chick, J.H. and Pegg, M.A., 2008. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Invas., 11, 483496.CrossRefGoogle Scholar
Schiemer, F., Keckeis, H., Reckendorfer, W. and Winkler, G., 2001. The “inshore retention concept” and its significance for large rivers. Arch. Hydrobiol., Large Rivers 2–4, 509516.
Shannon, C.E. and Weaver, W., 1963. The Mathematical Theory of Communication, University of Illinois Press, Urbana, 1117.Google Scholar
Shiel, R.J. and Walker, K.F., 1984. Zooplankton of regulated and unregulated rivers: the Murray–Darling system, Australia. In: Lillehammer, A. and Salviet, S.J. (eds.), Regulated Rivers, University of Olso Press, Olso, 263270.Google Scholar
Soballe, D.M. and Kimmel, B.L., 1987. A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68, 19431954.CrossRefGoogle Scholar
Špoljar, M., Habdija, I. and Primc-Habdija, B., 2007. The influence of the lotic and lentic stretches on the Zooseston Flux through the Plitvice Lakes (Croatia). Ann. Limnol. - Int. J. Lim., 43, 2940.CrossRefGoogle Scholar
Špoljar, M., Dražina, T., Ostojić, A., Miliša, M., Gligora Udovič, M. & Štafa, D., 2012a. Bryophyte communities and seston in a karst stream (Jankovac stream, Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 125138.CrossRefGoogle Scholar
Špoljar, M., Dražina, T., Šargač, J., Kralj Borojević, K. & Žutinić, P., 2012b. Submerged macrophytes as a habitat for zooplankton development in two reservoirs of a flow-through system ( Papuk Nature Park, Croatia). Ann. Limnol. - Int. J. Lim., 48, 161175.CrossRefGoogle Scholar
Stockner, J.G., 1987. Lake fertilization: the enrichment cycle and lake sockeye salmon (Oncorhynchus nerka) production. In: Margolis, H.D. and Wood, C.C.(eds.), Sock- Eye Salmon (Oncorhynchus nerka) Population Biology and Future Management, Canadian Special Publication Fisheries Aquatic Sciences 96, Ottawa, 198215.Google Scholar
Suikkanen, S., Laamanen, M. and Huttunen, M., 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar. Coast. Shelf Sci., 71, 580592.CrossRefGoogle Scholar
Sumorok, B., Zelazna-Wieczorek, J. and Kostrzewa, K., 2009. Qualitative and quantitative phytoseston changes in two different stream-order river segments over a period of twelve years (Grabia and Brodnia, central Poland). Inst. Oceanogr., 38, 5563.Google Scholar
Tafe, D.J., 1990. Zooplankton and salinity in the Rufiji River delta, Tanzania. Hydrobiologia, 208, 123130.CrossRefGoogle Scholar
Thorp, J.H., Black, A.R., Haag, K.H. and Wehr, J.D., 1994. Zooplankton assemblages in the Ohio River: seasonal, tributary, and navigation dam effects. Can. J. Fish. Aquat. Sci., 51, 16341643.CrossRefGoogle Scholar
Van Dijk, G.M. and Van Zanten, B., 1995. Seasonal changes in zooplankton abundance in the lower Rhine during 1987–1991. Hydrobiologia, 304, 2938.CrossRefGoogle Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The River continuum concept. Can. J. Aquat. Sci., 37, 130137.CrossRefGoogle Scholar
Viroux, L., 1997. Zooplankton development in two large lowland rivers, the Moselle: France and the Meuse: Belgium in 1994. J. Plankton Res., 19, 17431762.CrossRefGoogle Scholar
Viroux, L., 2002. Seasonal and longitudinal aspects of microcrustacean (Cladocera, Copepoda) dynamics in a lowland river. J. Plankton Res., 24, 281292.CrossRefGoogle Scholar
Watson, N.H.F., 1974. Zooplankton of the St. Lawrence Great Lakes-species composition, distribution, and abundance. J. Fisheries Res. Board. Can., 31, 783794.CrossRefGoogle Scholar
Welker, M. and Walz, N., 1998. Can mussels control the plankton in rivers? – a planktological approach applying a Lagrangian sampling strategy. Limnol. Oceanogr., 43, 753762.CrossRefGoogle Scholar
Wu, N., Schmalz, B. and Fohrer, N., 2011. Distribution of phytoplankton in a German lowland river in relation to environmental factors. J. Plankton Res., 33, 807820.CrossRefGoogle Scholar
Zarfdjian, M., Michaloudie, E., Bobori, D.C. and Mourelatos, S., 2000. Zooplankton abundance in the Aliakmon River, Greece, Belg . J. Zool., 130, 2933.Google Scholar
Zhou, S.C., Huang, X.F. and Cai, Q.H., 2009. Temporal and spatial distributions of rotifers in Xiangxi Bay of the Three Gorges Reservoir, China. Int. Rev. Hydrobiol., 94, 542559.CrossRefGoogle Scholar
Zimmermann-Timm, H., Holst, H. and Kausch, H., 2007. Spatial dynamics of rotifers in a large lowland river, the Elbe, Germany: how important are retentive shoreline habitats for the plankton community? Hydrobiologia, 593, 4958.CrossRefGoogle Scholar