Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T21:21:18.910Z Has data issue: false hasContentIssue false

A simple approach to water and plankton sampling for water microbiological and physicochemical characterizations at various depths in aquatic ecosystems

Published online by Cambridge University Press:  22 December 2010

Fatthy Mohamed Morsy*
Affiliation:
Botany Department, Faculty of Science, Assiut University, Assiut, Egypt
*
*Corresponding author: [email protected]
Get access

Abstract

Water microbiological and physicochemical characterizations at various depths of aquatic ecosystems are basic requirements in several fields of research. A chief difficulty in hydrobiology, limnology, biological oceanography and water environmental microbiology is that of taking accurate field collections that are representative of the natural environment and population at various depths of aquatic ecosystems. Gathering water/plankton samples in a level just below the surface of the water body upon rising in columns from various depths due to hydrostatic pressure variations provided a simple approach for water and plankton sampling. Based on this approach, several forms of simple devices for water and plankton sampling were developed for water microbiological and physicochemical characterizations at various depths of aquatic ecosystems. The described approach showed less sampling errors in comparison to Van Dorn bottle and was comparable to water pumping but requires no external source of power. The described samplers are inexpensive and can be self constructed.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, C.-Y., Joung, S.-H., Park, C.-S., Kim, H.-S., Yoon, B.-D. and Oh, H.-M., 2008. Comparison of sampling and analytical methods for monitoring of cyanobacteria-dominated surface waters. Hydrobiologia , 596, 413421.CrossRefGoogle Scholar
Baker, A.L., 1970. An inexpensive microsampler. Limnol. Oceanogr. , 15, 158160.CrossRefGoogle Scholar
Batten, S.D., Clark, R., Flinkman, J., Hays, G., John, E., John, A.W.G., Jonas, T., Lindley, J.A., Stevens, D.P. and Walne, A., 2003. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. , 58, 193215.CrossRefGoogle Scholar
Benfield, M.C., Davis, C.S., Wiebe, P.H., Gallager, S.M., Lough, R.G. and Copley, N.J., 1996. Video Plankton Recorder estimates of copepod, pteropod and Larvacean distributions from a stratified region of Georges Bank with comparative measurements from a MOCNESS sampler. Deep-Sea Res. II , 43, 19251945.CrossRefGoogle Scholar
Bennett, A. and Bogorad, L., 1973. Complementary chromatic adaptation in a filamentous blue-green-alga. J. Cell Biol. , 58, 419435.CrossRefGoogle Scholar
Blakar, I.A., 1979. A close-interval water sampler with minimal disturbance properties. Limnol. Oceanogr. , 24, 983988.CrossRefGoogle Scholar
Boney, A.D., 1989. Phytoplankton – 2nd edition, Hodder and Stroughton Limited, London.Google Scholar
Broenkow, W.W., 1969. An interface sampler using spring-actuated syringes. Limnol. Oceanogr. , 14, 288291.CrossRefGoogle Scholar
Burd, B.J. and Thomson, R.E., 1993. Flow volume calculations based on three-dimensional current and net orientation data. Deep-Sea Res. I , 40, 11411153.CrossRefGoogle Scholar
Clarke, W.D., 1964. The jet net, a new high-speed plankton sampler. J. Mar. Res. , 22, 284287.Google Scholar
Clasby, R.C., Reeburgh, W.S. and Alexander, V., 1972. A close interval syringe sampler. Limnol. Oceanogr. , 17, 632633.CrossRefGoogle Scholar
Culberson, C. and Pytkowicz, R.M., 1970. A near-bottom water sampler. Limnol. Oceanogr. , 15, 160162.CrossRefGoogle Scholar
Davis, C.S., Gallager, S.M. and Solow, A.R., 1992a. Microaggregations of oceanic plankton observed by towed video microscopy. Science , 257, 230232.CrossRefGoogle Scholar
Davis, C.S., Gallager, S.M., Berman, M.S., Haury, L.R. and Strickler, J.R., 1992b. The video plankton recorder (VPR): design and initial results. Arch. Hydrobiol. Beih. Ergebn. Limnol. , 36, 6781.Google Scholar
Davis, C.S., Gallager, S.M., Marra, M. and Stewart, W.K., 1996. Rapid visualization of plankton abundance and taxonomic composition using the Video Plankton Recorder. Deep-Sea Res. II , 43, 19471970.CrossRefGoogle Scholar
Donaghay, P.L., Rines, H.M. and Sieburth, J.M., 1992. Simultaneous sampling of fine scale biological, chemical and physical structure in stratified waters. Arch. Hydrobiol. Beih. Ergebn. Limnol. , 36, 97108.Google Scholar
Finucane, J.H. and May, B.Z., 1961. Modified Van Dorn water sampler. Limnol. Oceanogr. , 6, 8587.CrossRefGoogle Scholar
Gleason, G.R. and Goff, G.F., 1963. A multi-level water sampler. Prog. Fish Cult. , 25, 104105.CrossRefGoogle Scholar
Hays, G.C., 1994. Mesh selection and filtration efficiency of the Continuous Plankton Recorder. J. Plankton Res. , 16, 403412.CrossRefGoogle Scholar
Heaney, S.I., 1974. A pneumatically-operated water sampler for close intervals of depth. Freshwater Biol. , 4, 103106.CrossRefGoogle Scholar
Hernroth, L., 1987. Sampling and filtration efficiency of two commonly used plankton nets. A comparative study of the Nansen net and the Unesco WP 2 net. J. Plankton Res. , 9, 719728.CrossRefGoogle Scholar
Heron, A.C., 1982. A vertical free fall plankton net with no mouth obstructions. Limnol. Oceanogr. , 27, 380383.CrossRefGoogle Scholar
Holden, M., 1976. Chlorophylls. In: Chemistry and biochemistry of plant pigments, 2nd edition, Goodwin, T.W. (ed.), Academic Press, London, Vol. 2, 137.Google Scholar
Hopkins, T.L., 1963. The variation in the catch of plankton nets in a system of estuaries. J. Mar. Res. , 21, 3947.Google Scholar
Joeris, L.S., 1964. A horizontal sampler for collection of water samples near the bottom. Limnol. Oceanogr. , 9, 595598.CrossRefGoogle Scholar
John, E.H., Batten, S.D., Stevens, D., Walne, A.W., Jonas, T. and Hays, G.C., 2002. Continuous plankton records stand the test of time: evaluation of flow rates, clogging and the continuity of the CPR time series. J. Plankton Res. , 24, 941946.CrossRefGoogle Scholar
Kils, U., 1992. The ecoSCOPE and dynIMAGE: Microscale tools for in situ studies of predator-prey interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. , 36, 8396.Google Scholar
Kimmerer, W.J., 1984. A further improvement in the operation of opening/closing nets. J. Plankton Res. , 6, 527529.CrossRefGoogle Scholar
Longhurst, A.R., Reith, A.D., Bower, R.E. and Seibert, D.L.R., 1966. A new system for the collection of multiple serial plankton samples. Deep-Sea Res. Oceanograph. abstr. , 13, 213222.CrossRefGoogle Scholar
Lund, J.W.G., 1954. The seasonal cycle of the plankton diatom Melosira italica (Her.) Kütz subsp. subarctica O. Müll. J. Ecol. , 42, 151179.CrossRefGoogle Scholar
Lund, J.W.G. and Talling, J.F., 1957. Botanical limnological methods with special reference to the algae. Bot. Rev. , 23, 489583.CrossRefGoogle Scholar
Mackas, D.L., Denman, K.L. and Abbott, M.R., 1985. Plankton patchiness: biology in the physical vernacular. Bull. Mar. Sci. , 37, 652674.Google Scholar
Nicholls, K.H., 1979. A simple tubular phytoplankton sampler for vertical profiling in lakes. Freshwater Biol. , 9, 8589.CrossRefGoogle Scholar
O'Hara, F.C., 1984. Description of a new automatic plankton sampler that collects and preserves multiple samples over a period of several days. Hydrobiologia , 111, 103105.CrossRefGoogle Scholar
Pierce, E.L., 1937. A plankton collector for fast towing. Nature , 140, 10141015.CrossRefGoogle Scholar
Sarada, R., Pillai, M.G. and Ravishanker, G.A., 1999. Phycocyanin from Spirulina sp: Influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Proc. Biochem. , 34, 795801.CrossRefGoogle Scholar
Sauter, E.J., Schlüter, M., Wegner, J. and Labahn, E., 2005. A routine device for high resolution bottom water sampling. J. Sea Res. , 54, 204210.CrossRefGoogle Scholar
Schulze, P.C., Strickler, J.R., Bergstrom, B.I., Berman, M.S., Donaghay, P., Gallager, S., Haney, J.F., Hargreaves, B.R., Kils, U., Paffenhiifer, G.A., Richman, S., Vanderpleog, H.A., Welsch, W., Wethey, D. and Yen, J., 1992. Video systems for in situ studies of zooplankton. Arch. Hydrobiol. Beih. Ergebn. Limnol. , 36, l21.Google Scholar
Seuront, L. and Menu, D., 2006. A pneumatically-operated, submersible, three-dimensional water sampler for microscale studies. Limnol. Oceanogr. Methods , 4, 260267.CrossRefGoogle Scholar
Seymour, J.R., Mitchell, J.G., Pearson, L. and Waters, R.L., 2000. Heterogeneity in bacterioplankton abundance from 4.5 millimeter resolution sampling. Aquat. Microb. Ecol. , 22, 143153.CrossRefGoogle Scholar
Slack, H.D., 1955. A quantitative plankton net for horizontal sampling. Hydrobiologia , 7, 264268.CrossRefGoogle Scholar
Summerfelt, R.C. and Lewis, W.M., 1968. A water sampler employing a solenoid tripping mechanism. Trans. Am. Fish. Soc. , 97, 287289.CrossRefGoogle Scholar
Sutherland, T.F., Leonard, C. and Taylor, F.J.R., 1992. A segmented pipe sampler for integrated profiling of the upper water column. J. Plankton Res. , 14, 915923.CrossRefGoogle Scholar
Tuel, M.D. and Knauer, G.A., 1982. Improvement of the pre-deployment net closure procedure used with opening/closing plankton nets. J. Plankton Res. , 4, 973975.CrossRefGoogle Scholar
Van Dorn, W.G., 1957. Large-volume water sampler. Trans. Am. Geophys. Union , 37, 682684.CrossRefGoogle Scholar
Walker, C.R., 1955. A modification of the Kemmerer water bottle for sampling shallow waters. Prog. Fish Cult. , 17, 41.CrossRefGoogle Scholar
Warner, A.J. and Hays, G.C., 1994. Sampling by the Continuous Plankton Recorder survey. Prog. Oceanogr. , 34, 237256.CrossRefGoogle Scholar
Wiebe, P.H. and Benfield, M.C., 2003. From the Hensen net toward four-dimensional biological oceanography. Prog. Oceanogr. , 56, 7136.CrossRefGoogle Scholar