Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T19:09:30.476Z Has data issue: false hasContentIssue false

Periodic picophytoplankton predominance in a large, shallow alkaline lake (Lake Fertő, Neusiedlersee)

Published online by Cambridge University Press:  19 March 2010

Boglárka Somogyi*
Affiliation:
Balaton Limnological Research Institute of the HAS, 8237 Tihany, Klebelsberg K. 3., Hungary
Tamás Felföldi
Affiliation:
Department of Microbiology, Eötvös Loránd University, 1117 Budapest, Pázmány P. 1/c., Hungary
Mária Dinka
Affiliation:
Hungarian Danube Research Station of the HAS, 2163 Vácrátót, Alkotmány 2-4., Hungary
Lajos Vörös
Affiliation:
Balaton Limnological Research Institute of the HAS, 8237 Tihany, Klebelsberg K. 3., Hungary
Get access

Abstract

The biomass and composition of the phytoplankton was studied at seven sampling stations located at different water bodies (open water, inner pond and canal) of a large, shallow turbid lake (Lake Fertő, Neusiedlersee). The open water was characterized by picocyanobacteria and meroplanktonic diatoms, the artificial canal by epiphytic diatoms, cryptophytes and chlorophytes. The inner ponds, based on the phytoplankton composition, were positioned between these water bodies. High picoplankton abundance (>106 cells.mL−1) and predominance (up to 80% contribution to the total phytoplankton biomass) were detected in the open water and the inner ponds, which was hypothesized to be the result of the turbid environment by the suppression of the top down control and by light-limitation. Information on the diversity of the picoplankton in the open water of the lake has been presented first time in this study. Based on molecular analysis (16S rRNA gene and cpcBA-IGS region) the dominant group of picocyanobacteria belonged to the Cyanobium gracile cluster (group A) of the picophytoplankton clade in April. Members of two other picocyanobacterial groups (group B and C) were also detected.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agustí, S., 1991. Allometric scaling of light absorption and scattering by phytoplankton cells. Can. J. Fish. Aquat. Sci. , 48, 763767. CrossRef
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. , 25, 33893402. CrossRef
Becker, S., Richl, P. and Ernst, A., 2007. Seasonal and habitat-related distribution pattern of Synechocccus genotypes in Lake Constance. FEMS Microbiol. Ecol. , 62, 6477. CrossRef
Bell, T. and Kalff, J., 2001. The contribution of picoplankton in marine and freshwater system of different trophic status and depth. Limnol. Oceanogr. , 46, 12431248. CrossRef
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J. and Wheeler, D.L., 2008. GenBank. Nucleic Acids Res. , 36, D25D30. CrossRef
Borsodi, A.K., Farkas, I. and Kurdi, P., 1998. Numerical analysis of planktonic and reed biofilm bacterial communities of Lake Fertő (Neusiedlersee, Hungary/Austria). Wat. Res. , 32, 18311840. CrossRef
Buczkó, K., 1989. About the spatial distribution of the algae and the quantitative development of periphyton in the Hungarian part of Lake Fertő (Neusiedler See). BFB-Bericht , 71, 11124.
Callieri, C., 2008. Picophytoplankton in freshwater ecosystems: the importance of small-sized phototrophs. Freshwat. Rev. , 1, 128. CrossRef
Carrick H.J. and Schelske C.L., 1997. Have we overlooked the importance of small phytoplankton in productive waters? Limnol. Oceanogr., 42, 1613–1621.
Crosbie, N.D., Pöckl, M. and Weisse, T., 2003. Dispersal and phylogenetic diversity of nonmarine picocyanobacteria, inferred from 16S rRNA gene and cpcBA-intergenic spacer sequence analyses. Appl. Environ. Microbiol. , 69, 57165721. CrossRef
Del Negro, P., Paoli, A., Celussi, M., Crevatin, E., Valeri, A., Larato, C. and Fonda Umani, S., 2007. Picoplanktonic cyanobacteria in different Adriatic brackish environments. Transit. Waters Bull. , 3, 1316.
Dinka, M., Ágoston-Szabó, E., Berczik, Á. and Kutrucz, Gy., 2004. Influence of water level fluctuation on the spatial dynamic of the water chemistry at Lake Fertő/Neusiedler See. Limnologica , 34, 4856. CrossRef
Dokulil M., 1979. Optical properties, colour and turbidity. In: Löffler H. (ed.), Neusiedlersee – Limnology of a shallow lake in Central Europe, Dr. W. Junk Publishers, The Hague-Boston-London, 151–162.
Dolan, J.R., Sall, N., Metcalfe, A. and Gasser, B., 2003. Effects of turbulence on the feeding and growth of a marine oligotrich ciliate. Aquat. Microb. Ecol. , 31, 183192. CrossRef
Eaton A.D., Clesceri L.S. and Greenberg A.E., 1995. Solids. In: Standard Methods, 19th edn., American Public Health Association, 2-56–2-57.
Ernst, A., Becker, S., Wollenzien, U.I. and Postius, C., 2003. Ecosystem-dependent adaptive radiations of picocyanobacteria interred from 16S rRNA and ITS-1 sequence analysis. Microbiology (UK) , 149, 217228. CrossRef
Felföldi, T., Somogyi, B., Marialigeti, K. and Vörös, L., 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol. , 68, 385395. CrossRef
G.-Tóth, L., V.-Balogh, K. and Zánkai, N., 1986. Significance and degree of abioseston consumption in the filter-feeder Daphnia galeata Sars. Am. Richard (Cladocera) in Lake Balaton. Arch. Hydrobiol. , 106, 4560.
Hart, R.C., 1988. Zooplankton feeding rates in relation to suspended sediment content: potential influences on community structure in a turbid reservoir. Freshwat. Biol. , 19, 123139. CrossRef
Haverkamp, T., Acinas, S.G., Doeleman, M., Stomp, M., Huisman, J. and Stal, L.J., 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. , 10, 174188.
Hepperle, D. and Krienitz, L., 2001. Systematics and ecology of chlorophyte picoplankton in German inland waters along a nutrient gradient. Int. Rev. Hydrobiol. , 86, 269284. 3.0.CO;2-7>CrossRef
Herzig A. and Koste W., 1989. The development of Hexathra spp. in a shallow alkaline lake. Hydrobiologia, 186/187, 129–136.
Ivanikova, N.V., Popels, L.C., McKay, M.L. and Bullerjahn, G.S., 2007. Lake Superior supports novel clusters of cyanobacterial picoplankton. Appl. Environ. Microbiol. , 73, 40554065. CrossRef
Jack, J.D. and Gilbert, J.J., 1993. The effect of suspended clay on ciliate population growth rates. Freshwat. Biol. , 29, 385394. CrossRef
Jasser I., 1997. The dynamics and importance of picoplankton in shallow, dystrophic lake in comparison with surface waters of two deep lakes with contrasting trophic status. Hydrobiologia, 342/343, 87–93.
Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. , 16, 111120. CrossRef
Levine, S.N., Zehrer, R.F. and Burns, C.W., 2005. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshwater Biol. , 50, 15151536. CrossRef
MacIsaac E.A. and Stockner J.G., 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy. In: Kemp P.F., Sherr B.F., Sherr E.B. and Cole J.J. (eds.), Handbook of methods in aquatic microbial ecology, Lewis Publishers, Boca Raton, Ann Arbor, London, Tokyo, 187–197.
Miquelis, A., Rougier, C. and Pourriot, R., 1998. Impact of turbulence and turbidity on the grazing rate of the rotifer Brachionus calyciflorus (Pallas). Hydrobiologia , 386, 203211. CrossRef
Mózes, A., Présing, M. and Vörös, L., 2006. Seasonal dynamics of picocyanobacteria and picoeukaryotes in a large shallow lake (Lake Balaton, Hungary). Int. Rev. Hydrobiol. , 91, 3850. CrossRef
Nübel, U., Garcia-Pichel, F. and Muyzer, G., 1997. PCR primers to amplify 16S rRNA genes from Cyanobacteria. Appl. Environ. Microbiol. , 63, 33273332.
Padisák J., 1992. Species composition, spatial distribution and the seasonal and interannual dynamics of phytoplankton in brown-water lakes enclosed with reed belts (Neusiedlersee/Fertő; Austria/Hungary). BFB-Bericht, 79, 13–29.
Padisák, J. and Dokulil, M., 1994. Meroplankton dynamics in a saline, turbulent, turbid shallow lake (Neusiedlersee, Austria and Hungary). Hydrobiologia , 289, 2342. CrossRef
Pfand, K. and Boenigk, J., 2006. Stuck in the mud: suspended sediments as a key issue for survival of chrysomonad flagellates. Aquat. Microb. Ecol. , 45, 8999. CrossRef
Raven, J.A., 1998. The twelfth Transley lecture. Small is beautiful: the picophytoplankton. Funct. Ecol. , 12, 503513. CrossRef
Robertson, B.R., Tezuka, N. and Watanabe, M.M., 2001. Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int. J. Syst. Evol. Microbiol. , 51, 861871. CrossRef
Saitou, N. and Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. , 4, 406425.
Sánchez-Baracaldo, P., Handley, B.A. and Hayes, P.K., 2008. Picocyanobacterial community structure of freshwater lakes and the Baltic Sea revealed by phylogenetic analyses and clade-specific quantitative PCR. Microbiology (UK) , 154, 33473357. CrossRef
Schönberger, M., 1994. Planktonic ciliated protozoa of Neusiedler See (Austria/Hungary) – a comparison between the turbid open lake and a reedless brown-water pond. Marine Microbial Food Webs , 8, 251263.
Sipos, R., Székely, A.J., Palatinszky, M., Révész, S., Márialigeti, K. and Nikolausz, M., 2007. Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targeting bacterial community analysis. FEMS Microbiol. Ecol. , 60, 341350. CrossRef
Somogyi, B., Felföldi, T., Vanyovszki, J., Ágyi, Á., Márialigeti, K. and Vörös, L., 2009. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol. , 43, 735744. CrossRef
Stockner, J.G., 1991. Autotrophic picoplankton in freshwater ecosystems: The view from summit. Int. Rev. Ges. Hydrobiol. , 76, 483492. CrossRef
Stockner J.G., Callieri C. and Cronberg G., 2000. Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton B.A. and Potts M. (eds.), The ecology of cyanobacteria – Their diversity in time and space, Kluwer Academic Publishers, Dordrecht, London, Boston, 195–231.
Szelag-Wasielewska E., 1997. Picoplankton and other size groups of phytoplankton in various shallow lakes. Hydrobiologia, 342/343, 79–85.
Szelag-Wasielewska E., 2003. Phytoplankton community structure in non-stratified lakes of Pomerania (NW Poland). Hydrobiologia, 506/509, 229–236.
Tamura, K., Dudley, J., Nei, M. and Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. , 24, 15961599. CrossRef
Tevanné B.E., 1981. The algal flora of Lake Fertő. Hidrológiai Közlöny, 61, 97–144 [in Hungarian with German summary].
Thompson, J.D., Higgins, D.G. and Gibson, T.J., 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. , 22, 46734680. CrossRef
Urbach, E., Scanlan, D.J., Distel, D.L., Waterbury, J.B. and Chisholm, S.W., 1998. Rapid diversification of marine picophytoplankton with dissimilar light-harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (Cyanobacteria). J. Mol. Evol. , 46, 188201. CrossRef
Utermöhl, H., 1958. Zur Vervolkommung der quantitativen Phytoplankton-Methodik. Mitt. Int. Ver. Limnol. , 9, 138.
Vörös, L., 1989. On the importance of the picoplankton in Lake Balaton (in Hungarian with English summary). Hidrológiai Közlöny , 69, 321327.
Vörös, L., Gulyás, P. and Németh, J., 1991. Occurrence, dynamics and production of picoplankton in Hungarian shallow lakes. Int. Rev. Ges. Hydrobiol. , 76, 617629. CrossRef
Vörös L., Callieri C., V.-Balogh K. and Bertoni R., 1998. Freshwater picocyanobacteria along a trophic gradient and light quality range. Hydrobiologia, 369/370, 117–125.
Vörös, L., Somogyi, B. and Boros, E., 2008. Birds cause net heterotrophy in shallow lakes. Acta Zool. Hung. , 54, 2334.
Wetzel R.G. and Likens G.E., 1991. Limnological Analyses, 2nd edn., Springer-Verlag, New York, 391 p.