Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T02:01:01.369Z Has data issue: false hasContentIssue false

Metal levels and accumulation patterns of sea lamprey ammocoetes (Petromyzon marinus Linnaeus, 1758) from a tidal freshwater habitat

Published online by Cambridge University Press:  18 June 2013

Mário Jorge Araújo*
Affiliation:
CIMAR-LA/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto, Portugal
Pedro Reis
Affiliation:
CIMAR-LA/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto, Portugal
Ana Catarina Braga
Affiliation:
CIMAR-LA/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto, Portugal
Carlos Antunes
Affiliation:
CIMAR-LA/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, Rua dos Bragas, 289, 4050-123 Porto, Portugal Gallaecia University School, Largo das Oliveiras, 4920-275 Vila Nova de Cerveira, Portugal Aquamuseum of River Minho, Parque do Castelinho, 4920-290 Vila Nova de Cerveira, Portugal
*
*Corresponding author: [email protected].
Get access

Abstract

Ammocoetes of sea lamprey (Petromyzon marinus Linnaeus, 1758) from an assumedly pristine tidal freshwater habitat were used for determination of metal levels and accumulation patterns with size. The individuals were collected during the winter of 2011 in river Minho (Iberian Peninsula, Southwest of Europe) and the levels of metals (Cd, Cu, Cr, Fe, Pb, Mn and Zn) in the whole body were analysed by atomic absorption spectrometry. Fe was the metal with highest levels (maximum of 1438 ppm), while Cd and Pb were the lowest accumulated elements (overall means of 0.093±0.065 ppm and 0.259±0.094 ppm, respectively). Larger ammocoetes seemed prone to accumulate Cu, Fe and Mn (P<0.05). Pb and Zn levels also seemed to increase with ammocoetes size; however, statistical differences were not found between size classes (P>0.05).

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida, P.R. and Quintella, B.R., 2002. Larval habitat of the sea lamprey (Petromyzon marinus L.) in the River Mondego (Portugal). In: Collares-Pereira, M.J., Coelho, M.M. and Cowx, I.G. (eds.), Freshwater Fish Conservation: Options for the Future – Fishing News Books, Blackwell Science, Oxford, 121130.Google Scholar
Almeida, P.R., Tomaz, G., Andrade, N.O. and Quintella, B.R., 2008. Morphological analysis of geographic variation of sea lamprey ammocoetes in Portuguese river basins. Hydrobiologia, 602, 4759.CrossRefGoogle Scholar
Ambedkar, G. and Muniyan, M., 2011. Accumulation of metals in the five commercially important freshwater fishes available in vellar river, TamilNadu, India. Arch. Appl. Sci. Res., 3, 261264.Google Scholar
Andersen, H.B., Caldwell, R.S., Toll, J., Do, T. and Saban, L., 2010. Sensitivity of lamprey ammocoetes to six chemicals. Arch. Environ. Contam. Toxicol., 59, 622631.CrossRefGoogle ScholarPubMed
Andersen, Ø., Pantopoulos, K., Kao, H.T., Muckenthaler, M., Youson, J. and Pieribone, V., 1998. Regulation of iron metabolism in the sanguivore lamprey Lampetra fluviatilis molecular cloning of two ferritin subunits and two iron-regulatory proteins (IRP) reveals evolutionary conservation of the iron-regulatory element (IRE)/IRP regulatory system. Eur. J. Biochem., 254, 223229.CrossRefGoogle ScholarPubMed
Araújo, M.J., Ozório, R.O.A., Bessa, R.J.B., Kijjoa, A., Gonçalves, J.F.M. and Antunes, C., 2013. Nutritional status of adult sea lamprey (Petromyzon marinus, Linnaeus, 1758) during spawning migration in the Minho River, NW Iberian Peninsula. J. Appl. Ichthyol., 17, DOI: 10.1111/jai.12192.Google Scholar
Clark, R.B., 2002. Marine Pollution (5th edn,), Oxford University Press, Oxford, 340 p.Google Scholar
Dural, M., Göksu, M.Z.L. and Özak, A.A., 2007. Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chem., 102, 415421.CrossRefGoogle Scholar
Durrieu, G., Maury-Brachet, R., Girardin, M., Rochard, E. and Boudou, A., 2005. Contamination by heavy Metals (Cd, Zn, Cu, and Hg) of eight fish species in the Gironde Estuary (France). Estuaries, 28, 581591.CrossRefGoogle Scholar
Eisler, R., 1985. Cadmium hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85 (1.2). Contaminant Hazard Reviews Report No. 2.
Eisler, R., 1986. Chromium hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85 (1.6). Contaminant Hazard Reviews Report No. 6.
Froese, R., 2006. Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol., 22, 241253.CrossRefGoogle Scholar
Gaillardet, J., Viers, J. and Dupré, B., 2011. Trace elements in river waters. In: Holland, H.D. and Turekian, K.K. (eds.), Treatise on Geochemistry, Vol. 5, Elsevier-Pergamon, Oxford, 293338.Google Scholar
Hardisty, M.W., 1986. Petromyzon marinus. In: Holcik, J. (ed.), The Freshwater Fishes of Europe, vol. I. Aula-Verlag, Wiesbaden, 92116.Google Scholar
Hogstrand, C. and Wood, C.M., 1996. The physiology and toxicology of zinc in fish. In: Taylor, E.W. (ed.), Toxicology of Aquatic Pollution – Physiological, Molecular and Cellular Approaches, University of Birmingham, Birmingham, 6184.CrossRefGoogle Scholar
Holmes, J.A. and Youson, J.H., 1996. Environmental sources of trace metals in sea lamprey, Petromyzon marinus, larvae in New Brunswick, Canada. Environ. Biol. Fish, 47, 299310.CrossRefGoogle Scholar
Irwin, R.J., Van Mouwerik, M., Stevens, L., Seese, M. and Basham, W., 1997. Environmental Contaminants Encyclopedia, Chromium VI (Hexavalent chromium) Entry, National Park Service, Water Resources Division, Fort Collins, CO, 43 p.Google Scholar
Kottelat, M. and Freyhof, J., 2007. Handbook of European Freshwater Fishes, Kottelat, Cornol and Freyhof, Berlin, 647 p.Google Scholar
Luoma, S.N., 1983. Bioavailability of trace metals to aquatic organisms – a review. Sci. Total Environ., 28, l22.CrossRefGoogle ScholarPubMed
Lyra, F.J., 2007. Caracterização da comunidade de macroinvertebrados bentónicos do estuário do rio Minho – sua relação com a distribuição de poluentes nos sedimentos. (“Characterization of benthic macroinvertebrates community of river Minho estuary – relation with distribution of pollutants in the sediments” in Portuguese). Master Thesis, Sciences Faculty, Oporto University, 109 p.
Macey, D.J. and Potter, I.C., 1986. Concentrations of non-haem iron in ammocoetes of species representing three extant lamprey families. Comp. Biochem. Physiol., 84A, 7779.CrossRefGoogle Scholar
Mason, C.F., 2002. Biology of Freshwater Pollution (4th edn,),  Pearson Education Limited, Essex, 387 p.Google Scholar
Mil-Homens, M., Costa, A.M., Fonseca, S., Trancoso, M.A., Lopes, C., Serrano, R. and Sousa, R., 2012. Natural heavy metal and metalloid concentrations in sediments of the Minho River estuary (Portugal): baseline values for environmental studies. Environ. Monit. Assess., DOI: 10.1007/s10661-012-2996-z.CrossRef
Moreno, F., Araújo, M.F., Moreno, J., Fatela, F. and Drago, T., 2005. Caracterização geoquímica de sedimentos superficiais do estuário do Minho e do sapal de Caminha (NW de Portugal) – estimativa do potencial de stress biológico. (“Geochemical characterization of superficial sediments of Minho estuary and Caminha marshland (NW Portugal) – estimation of biological stress potential” in Portuguese). In: Proceedings of the XIV Week of Geochemistry/VIII Congress of Geochemistry of Countries of Portuguese Language, University of Aveiro, Portugal, 675678.Google Scholar
Naimo, T.J., 1995. A review of the effects of heavy metals on freshwater mussels. Ecotoxicology, 4, 341362.CrossRefGoogle ScholarPubMed
Paiva, P.C., Araújo, M.C., Dias, J.M. and Jouanneau, J.M., 1993. Distribuição elementar em sedimentos do rio Minho (“Elemental distribution of river Minho sediments” in Portuguese). In: Proceedings of the II Congress of Geochemistry of Countries of Portuguese Language, Faculty of Sciences, University of Oporto, Portugal, 561566.Google Scholar
Pedro, S., Caçador, I., Quintella, B.R., Lança, M.J. and Almeida, P.R., 2013. Trace element accumulation in anadromous sea lamprey spawners. Ecol. Fresh. Fish, DOI: 10.1111/eff.12052.CrossRef
Pokras, M.A. and Kneeland, M.R., 2009. Understanding lead uptake and effects across species lines: a conservation medicine based approach. In: Watson, R.T., Fuller, M., Pokras, M. and Hunt, W.G. (eds.), Ingestion of Lead from Spent Ammunition: Implications for Wildlife and Humans, The Peregrine Fund, Boise, Idaho, USA, DOI: 10.4080/ilsa.2009.0101.Google Scholar
Protasowicki, M., Ciemniak, A. and Mamińska, M., 2011. Heavy metals in the riverine lamprey lampetra fluviatilis (L. 1758). Rocz. Ochrony Środowisk, 13, 12231232.Google Scholar
Reis, P. and Almeida, C.M.R., 2008. Matrix importance in animal material pre-treatment for metal determination. Food Chem., 107, 12941299.CrossRefGoogle Scholar
Reis, P.A., Antunes, J.C. and Almeida, C.M.R., 2009. Metal levels in sediments from the Minho estuary salt marsh: a metal clean area? Environ. Monit. Assess., 159, 191205.CrossRefGoogle ScholarPubMed
Santos, S., Vilar, V.J., Alves, P., Boaventura, R.A. and Botelho, C., 2012. Water quality in Minho/Miño River (Portugal/Spain). Environ. Monit. Assess., PMID, 22851194.
Sargent, P.A. and Youson, J.H., 1986. Quantification of iron deposits in several body tissues of lampreys (Petromyzon marinus L.) throughout the life cycle. Comp. Biochem. Physiol., 83A, 573577.CrossRefGoogle Scholar
Sousa, R., Dias, S., Guilhermino, L. and Antunes, C., 2008. Minho river tidal freshwater wetlands: threats to faunal biodiversity. Aquat. Biol., 3, 237250.CrossRefGoogle Scholar
Sousa, R., Araújo, M.J. and Antunes, J.C., 2012. Habitat modifications by sea lampreys (Petromyzon marinus) during the spawning season: effects on sediments. J. Appl. Ichthyol., 28, 766771.CrossRefGoogle Scholar
Srivastava, A.K. and Agrawal, S.J., 1983. Changes induced by manganese in fish testis. Experientia, 39, 13091310.CrossRefGoogle ScholarPubMed
Tiller, B.L., Patton, G.W., Dauble, D.D. and Paston, T.M., 2004. Monitoring Tissue Concentrations of Chromium and Fish Condition in Juvenile Fall Chinook Salmon from the Hanford Reach of the Columbia River. Pacific Northwest National Laboratory, PNNL-14473, Washington, EUA, 39 p.CrossRefGoogle Scholar
Tsioros, K.K. and Youson, J.H., 1997. Intracellular distribution of iron (and associated elements) in various cell types of larvae and juveniles of the sea lamprey (Petromyzon marinus). Tissue Cell, 29, 137162.CrossRefGoogle Scholar
USDA [United States Department of Agriculture], 2000. Heavy Metal Soil Contamination. Soil quality – Urban Technical Note No. 3. USDA, Natural Resources Conservation, Auburn, EUA, 7 p.PubMed
Widerlund, A. and Ingri, J., 1996. Redox cycling of Iron and Manganese in sediments of the Kalix River estuary, Northern Sweden. Aquat. Geochem., 2, 185201.CrossRefGoogle Scholar