Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T22:09:45.445Z Has data issue: false hasContentIssue false

Levels of arsenic, mercury and selenium in Clarias gariepinus from Sagua la Grande River, Cuba

Published online by Cambridge University Press:  13 June 2013

Lázaro Lima*
Affiliation:
Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, A.P. 6163, La Habana, Cuba
Maria Isabel López-Heras
Affiliation:
Departamento de Química Analítica, Universidad Complutense de Madrid, Ave. Complutense s/n, 28040 Madrid, España
Zoyne Pedrero
Affiliation:
Departamento de Química Analítica, Universidad Complutense de Madrid, Ave. Complutense s/n, 28040 Madrid, España
Susana Olivares Rieumont
Affiliation:
Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, A.P. 6163, La Habana, Cuba
Yolanda Madrid
Affiliation:
Departamento de Química Analítica, Universidad Complutense de Madrid, Ave. Complutense s/n, 28040 Madrid, España
Carmen Cámara
Affiliation:
Departamento de Química Analítica, Universidad Complutense de Madrid, Ave. Complutense s/n, 28040 Madrid, España
Daniel De la Rosa
Affiliation:
Instituto Superior de Tecnologías y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, A.P. 6163, La Habana, Cuba
*
*Corresponding author: [email protected]
Get access

Abstract

This study first reports concentrations of arsenic (As) and selenium (Se) in fish tissue of Clarias gariepinus from Sagua la Grande River in the Villa Clara Province, Cuba. We also confirm the mercury (Hg) levels in these fish obtained previously. Individuals were captured in three areas near Sagua la Grande City, where this fish is a common source of food for the city inhabitants. Concentrations range of As, Hg and Se (in wet weight) were 0.01–0.11 μg.g−1; 0.03–0.24 μg.g−1 and 0.75–3.87 μg.g−1, respectively. As and Se levels were positively correlated (n=19, ρ=0.673, P<0.05). High levels of Se were found in fish tissue and in 31.6% (n=6) of individuals captured exceeded the threshold value for Se toxicity, which means that Se is likely to produce adverse consequences on the fish themselves or on the wildlife organisms that eat them. As and Se concentrations were positively correlated with fish weight and length (P<0.05). Fish from irrigation canal have higher Se concentrations than fish captured in the other two stations. However, no significant differences were found between Hg and As concentrations in fish at the three sampling stations. Finally, as the Se concentrations in C. gariepinus were abnormally high, we suggest the need for studies about Se sources in the zone, the effect of Se in fish and the intake associated with fish consumption.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baeyens, W., Gao, Y., De Galan, S., Bilau, M., Van Larebeke, N. and Leermakers, M., 2009. Dietary exposure to total and toxic arsenic inBelgium: importance of arsenic speciation in North Sea fish. Mol. Nutr. Food Res., 53, 558565.CrossRefGoogle ScholarPubMed
Boudou, A. and Ribeyre, F., 1997. Mercury in the food web: accumulation and transfer mechanisms. In: Sigel, A. and Sigel, H. (eds), Metal Ions in Biological Systems, Mercury and its Effects on Environment and Biology, Marcel Dekker, New York.Google Scholar
Burger, J. and Campbell, K.R., 2004. Species differences in contaminants in fish on and adjacent to the Oak Ridge Reservation, Tennessee. Environ. Res., 96, 145155.CrossRefGoogle ScholarPubMed
Burger, J., Gaines, K., Boring, S., Stephens, W., Snodgrass, J. and Gochfeld, M., 2001. Mercury and selenium in fish from theSavannah River: species, trophic level, and locational differences. Environ. Res., A, 87, 108118.CrossRefGoogle ScholarPubMed
Clarkson, T. and Mago, L., 2006. The toxicology of mercury and its chemical compounds. Critic. Rev. Toxicol., 36, 609662.CrossRefGoogle ScholarPubMed
De La Rosa, D., Olivares, S., Lima, L., Diaz, O., Moyano, S., Bastías, J. and Muñoz, O., 2009a. Estimate of mercury and methyl mercury intake associated with fish consumption from Sagua la Grande River, Cuba. Food Addit. Contam., B, 17.CrossRefGoogle ScholarPubMed
De La Rosa, D., Lima, L., Olivares, S., Graham, D., Enriquez, I., Diaz, O., Bastias, J. and Muñoz, O., 2009b. Assessment of total mercury levels in Clarias gariepinus from the Sagua la Grande River, Cuba. Bull. Environ. Contam. Toxicol., 82, 101105.CrossRefGoogle ScholarPubMed
De la Rosa-Medero, D. and Campbell, L., 2008. Implications of Clarias gariepinus (african catfish) propagation in cuban waters. Integr. Environ. Assess. Manag., 4, 521522.CrossRefGoogle ScholarPubMed
Desta, Z., Borgstrøm, R., Rosseland, B. and Dadebo, E., 2007. Lower than expected mercury concentration in piscivorous African sharptooth catfish Clarias gariepinus (Burchell). Sci. Total Environ., 376, 134142.CrossRefGoogle Scholar
Díaz-Asencio, M., Alonso-Hernández, C., Bolanos, Y., Gómez-Batista, M., Morabito, R., Hernández-Albernas, J. and Sanchez-Cabeza, J., 2009. One century sedimentary record of mercury and lead pollution in the Sagua estuary (Cuba) derived from 210Pb and 137Cs chronology. Mar. Pollut. Bull., 59, 108115.CrossRefGoogle ScholarPubMed
Donohue, J. and Abernathy, C., 1999. Exposure to inorganic arsenic from Fish and Shellfish. In: Chappell, W., Abemathy, C. and Calderon, R. (eds), Arsenic Exposure and Health Effects, Elsevier Science, BV.Google Scholar
Dumont, E., Vanhaecke, F. and Cornelis, R., 2006. Selenium speciation from food source to metabolites: a critical review. Anal. Bioanal. Chem., 385, 13041323.CrossRefGoogle ScholarPubMed
Environment Canada, 2002. Canadian Tissue Residue Guidelines for the Protection of Wildlife Consumers of Aquatic Biota: Methylmercury, National Guidelines and Standard Office, Ottawa, Canada.
Gonzalez, H., 1991. Mercury pollution caused by a chlor- alkali plant. Water Air  Soil Pollut., 56, 8393.CrossRefGoogle Scholar
Hinck, J., Schmitt, C., Chojnacki, K. and Tillitt, D., 2009. Environmental contaminants in freshwater fish and their risk to piscivorous wildlife based on a national monitoring program. Environ. Monit. Assess., 152, 469494.CrossRefGoogle ScholarPubMed
Kapaj, S., Peterson, S., Liber, K. and Bhattacharya, P., 2006. Human health effects from chronic arsenic poisoning–a review. J. Environ. Sci. Health A, Tox. Hazard Subst. Environ. Eng., 41, 23992428.CrossRefGoogle ScholarPubMed
Khan, M. and Wang, F., 2009. Mercury–selenium compounds and their toxicological significance: toward a molecular understanding of the mercury–selenium antagonism. Environ. Toxicol. Chem., 28, 15671577.CrossRefGoogle Scholar
Lemly, A.D., 1993. Guidelines for evaluating selenium data from aquatic monitoring and assessment studies. Environ. Monit. Assess., 28, 83100.CrossRefGoogle ScholarPubMed
Lemly, A.D., 1996. Assessing the toxic threat of selenium to fish and aquatic birds. Environ. Monitor. Assess., 43, 1935.CrossRefGoogle ScholarPubMed
Lemly, A.D., 1999. Selenium impacts on fish: an insidious time bomb. Hum. Ecol. Risk Assessment, 5, 11391151.CrossRefGoogle Scholar
Letavayová, L., Vlckova, V. and Brozmanova, J., 2006. Selenium: from cancer prevention to DNA damage. Toxicology, 227, 114.CrossRefGoogle ScholarPubMed
Lima, A.P.S., Sarkis, J.E.S., Shihomatsu, H.M. and Müller, R.C.S., 2005. Mercury and selenium concentrations in fish samples from Cachoeira do Piriá Municipality, ParáState, Brazil. Environ. Res., 97, 236244.CrossRefGoogle Scholar
Luoma, S. and Presse, T., 2009. Emerging opportunities in management of selenium contamination. Environ. Sci. Technol., 43, 8483.CrossRefGoogle ScholarPubMed
Moreau, M., Surico-Bennett, J., Vicario-Fisher, M., Gerads, R., Gersberg, R. and Hurlbert, S., 2007. Selenium, arsenic, DDT and other contaminants in four fish species in the Salton Sea, California, their temporal trends, and their potential impact on human consumers and wildlife. Lake Reservoir Manag., 23, 536569.CrossRefGoogle Scholar
NC-493, 2006. Contaminantes metálicos en alimentos – Regulaciones sanitarias. Oficina Nacional de Normalización, Ciudad de La Habana, Cuba (In Spanish).
Olivares-Rieumont, S., Lima, L., Rivero, S., Graham, D. and Alonso-Hernandez, C., 2012. Mercury levels in sediments and mangrove oysters, Crassostrea rizophorae, from the North Coast of Villa Clara, Cuba. Bull. Environ. Contam. Toxicol., 88, 58993.CrossRefGoogle Scholar
Sanfeliu, C., Sebastia, L., Cristofol, R. and Rodriguez-Farré, E., 2003. Neurotoxicity of organomercurial compounds. Neurotox. Res., 5, 283306.CrossRefGoogle ScholarPubMed
Schram, E., Pedrero, Z., Cámara, C., Der Heul, J. and Luten, J., 2008. Enrichment of African catfish with functional selenium originating from garlic. Aquaculture Res., 39, 850860.CrossRefGoogle Scholar
Sirot, V., Guérin, T., Volatier, J. and Leblanc, J., 2009. Dietary exposure and biomarkers of arsenic in consumers of fish and shellfish fromFrance. Sci. Total Environ., 407, 18751885.CrossRefGoogle Scholar
Toledo-Pérez, J., Llanes-Iglesias, J., Millares-Dorado, N. and Lazo-de la Vega Valdez, J., 2007. Evaluación de dietas alternativas en la alimentación de Clarias gariepinus (Burchell, 1822). REDVET. Revista electrónica de Veterinaria 1695–7504 Volumen VIII Número 6. (In Spanish).
UNEP Chemicals, 2002. Global Mercury Assessment, UNEP Chemicals, Geneva.
Williams, G., West, J., Koch, I., Reimer, K. and Snow, E., 2009. Arsenic speciation in the freshwater crayfish, Cherax destructor Clark. Sci. Total Environ., 407, 26502658.CrossRefGoogle ScholarPubMed
World Health Organization, 1990. Environmental Health Criteria 101: Methylmercury. Programme of Chemical Safety, World Health Organization, Geneva, Switzerland.
Yang, D.Y., Chen, Y.W., Gunn, J.M. and Belzile, N., 2008. Selenium and mercury in organisms: interactions and mechanisms. Environ. Rev., 16, 7192.CrossRefGoogle Scholar
Yang, D.Y., Ye, X., Chen, Y.W. and Belzile, N., 2010. Inverse relationships between selenium and mercury in tissues of young walleye (Stizosedion vitreum) from Canadian boreal lakes. Sci. Total Environ., 408, 16761683.CrossRefGoogle ScholarPubMed
Zeng, H., Uthus, E. and Combs, G., 2005. Mechanistic aspects of the interaction between selenium and arsenic. J. Inorg. Biochem., 99, 12691274.CrossRefGoogle ScholarPubMed
Zheng, W., Pan, J. and Liu, W., 1988. Culture of catfish in China. Aquaculture, 75, 3544.CrossRefGoogle Scholar