Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T07:02:37.241Z Has data issue: false hasContentIssue false

How do interactive maternal traits and environmental factors determine offspring size in Daphnia magna?

Published online by Cambridge University Press:  10 January 2014

F. Gabsi*
Affiliation:
Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
D. S. Glazier
Affiliation:
Department of Biology, Brumbaugh Academic Center, Juniata College Huntingdon, Pennsylvania 16652, USA
M. Hammers-Wirtz
Affiliation:
Research Institute for Ecosystem Analysis and Assessment (gaiac), Kackertstrasse 10, 52072 Aachen, Germany
H. T. Ratte
Affiliation:
Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
T. G. Preuss
Affiliation:
Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52072 Aachen, Germany
*
*Corresponding author: [email protected]
Get access

Abstract

In this study, we investigated variation in offspring size (OS) of Daphnia magna in relation to multiple maternal traits and environmental variables. Data originated from laboratory experiments conducted at different feeding scenarios. The mother daphnids had different life-history traits and were reared under various feeding and density conditions. OS showed linear relationships with maternal traits, varying positively with maternal body size, age and brood number, and negatively with brood size and with the amount of ingested carbon. OS increased exponentially with crowding. Using stepwise multiple regression analysis, we developed an empirical model for the OS variation with the relevant maternal and environmental variables. Density dependence was considered by multiplying the resulting model by a density-effect function. We found that the ingested carbon and the maternal body size were the strongest determinants of the observed variation in the OS, whereas the brood size had the least impact on OS. Additionally, the brood number had no significant effect in determining the variability in the OS. The validity of the multivariate model was tested against an independent dataset. The model accurately predicted the OS despite several genetic and environmental differences compared with the data used for parameterization.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ban, S., Hideaki, T., Tsukasa, M. and Nishimura, K., 2009. Effects of physical interference on life history shifts in Daphnia pulex. J. Exp. Biol., 212, 31743183.CrossRefGoogle ScholarPubMed
Barata, C. and Baird, D.J., 1998. Phenotypic plasticity and constancy of life-history traits in laboratory clones of Daphnia magna Straus: effects of neonatal length. Funct. Ecol., 12, 442452.CrossRefGoogle Scholar
Bernardo, J., 1996. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Amer. Zool., 36, 216236.CrossRefGoogle Scholar
Boersma, M., 1995. The allocation of resources to reproduction in Daphnia galeata: against the odds? Ecology, 76, 12511261.CrossRefGoogle Scholar
Boersma, M., 1997. Offspring size and parental fitness in Daphnia magna. Evol. Ecol., 11, 439450.CrossRefGoogle Scholar
Burns, C.W., 1995. Effects of crowding and different food levels on growth and reproductive investment of Daphnia. Oecologia, 101, 234244.CrossRefGoogle ScholarPubMed
Cleuvers, M., 1995. Die Auswirkungen der negativen Interferenz auf die F1-Generation von Daphnia magna STRAUS. PhD Thesis, Rheinisch-Westfäalischen Technischen Hochschule Aachen, Germany.Google Scholar
Cleuvers, M., Goser, B. and Ratte, H.T., 1997. Life-strategy shift by intraspecific interaction in Daphnia magna: change in reproduction from quantity to quality. Oecologia, 110, 337345.CrossRefGoogle ScholarPubMed
Cooney, J.D. and Gehrs, C.V.V., 1980. The relationship between egg size and naupliar size in the calanoid copepod Diaptomus clavipes Schacht. Limnol. Oceanogr., 25, 549552.CrossRefGoogle Scholar
Coors, A., 1999. Lebensänderung bei Daphnia magna als Reaktion auf verschiedene Umweltfaktoren unter dem Einfluss eines Dispergiermittels. PhD thesis, Rheinisch-Westfäalischen Technischen Hochschule Aachen Germany.Google Scholar
Coors, A., Hammers-Wirtz, M. and Ratte, H.T., 2004. Adaptation to environmental stress in Daphnia magna simultaneously exposed to a xenobiotic. Chemosphere, 56, 395404.CrossRefGoogle ScholarPubMed
Cox, E.J., Naylor, C., Bradley, M.C. and Calow, P., 1992. Effect of differing maternal ration on adult fecundity and offspring size in laboratory cultures of Daphnia magna Straus for ecotoxicological testing. Aquat. Toxicol., 24, 6374.CrossRefGoogle Scholar
Dudycha, J.L. and Lynch, M., 2005. Conserved ontogeny and allometric scaling of resource acquisition and allocation in the Daphniidae. Evolution, 59, 565576.CrossRefGoogle ScholarPubMed
Ebert, D., 1993. The trade-off between offspring size and number in Daphnia magna: the influence of genetic, environmental and maternal effects. Arch. Hydrobiol., 90, 453473.Google Scholar
Enserink, L., de la Haye, M. and Maas, H., 1993. Reproductive strategy of Daphnia magna: implications for chronic toxicity tests. Aquat. Toxicol., 25, 111123.CrossRefGoogle Scholar
Gergs, A. and Ratte, H.T., 2009. Predicting functional response and size selectivity of juvenile Notonecta maculata foraging on Daphnia magna. Ecol. Model., 23, 33313341.CrossRefGoogle Scholar
Glazier, D.S., 1992. Effects of food, genotype and maternal size on offspring investment in Daphnia magna. Ecology, 73, 910926.CrossRefGoogle Scholar
Gliwicz, Z.M. and Guisande, C., 1992. Family planning in Daphnia: resistance to starvation in offspring born to mothers grown at different food levels. Oecologia, 91, 463467.CrossRefGoogle ScholarPubMed
Gergs, A., Zenker, A., Grimm, V. and Preuss, T.G., 2013. Chemical and natural stressors combined: from cryptic effects to population extinction. Scientific Reports (Nature Publishing Group), 3, 2036, DOI: 10.1038/srep02036.CrossRefGoogle ScholarPubMed
Goser, B., 1997. Dichteabhängige Änderungen der Entwicklung und Reproduktion bei Cladoceran. PhD thesis. Westfäalischen Technischen Hochschule Aachen Germany.Google Scholar
Goser, B. and Ratte, H.T., 1994. Experimental evidence of negative interference in Daphnia magna. Oecologia, 98, 354361.CrossRefGoogle ScholarPubMed
Goulden, C.E., Henry, L.L. and Berrigan, D., 1987. Egg size, postembryonic yolk and survival ability. Oecol. (Berl.), 72, 2837.CrossRefGoogle ScholarPubMed
Guinnee, M.A., West, S.A. and Little, T.J., 2004. Testing small clutch size models with Daphnia. Amer. Nat., 163, 880887.CrossRefGoogle ScholarPubMed
Guinnee, M.A., Gardner, A., Howard, A.E., West, S.A. and Little, T.J., 2006. The causes and consequences of variation in offspring size: a case study using Daphnia. J. Evol. Biol., 20, 577587.CrossRefGoogle ScholarPubMed
Guisande, C., 1993. Reproductive strategy as population density varies in Daphnia magna (Cladocera). Freshwat. Biol., 29, 463467.CrossRefGoogle Scholar
Guisande, C. and Gliwicz, Z.M., 1992. Egg size and clutch size in two Daphnia species grown at different food levels. J. Plankton Res., 14, 9971007.CrossRefGoogle Scholar
Hammers-Wirtz, M. and Ratte, H.T., 2000. Offspring fitness in Daphnia: Is the Daphnia reproduction test appropriate for extrapolating effects on the population level? Environ. Toxicol. Chem., 19, 18561866.CrossRefGoogle Scholar
Hülsmann, S., 2003. Recruitment patterns of Daphnia: a key for understanding midsummer declines? Hydrobiologia, 491, 3546.CrossRefGoogle Scholar
Hülsmann, S. and Weiler, W., 2000. Adult, not juvenile mortality as a major reason for the midsummer decline of a Daphnia population. J. Plankton Res., 22, 151168.CrossRefGoogle Scholar
Kooijman, S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Great Britain.CrossRefGoogle Scholar
Kuhl, A. and Lorenzen, H., 1964. Handling and culturing of Chlorella. In: Prescot, D.H. (ed.), Methods in Cell Physiology. Academic, New York, NY, USA.Google Scholar
LaMontagne, J.M. and McCauley, E., 2001. Maternal effects in Daphnia: what mothers are telling their offspring and do they listen? Ecol. Lett., 4, 6471.CrossRefGoogle Scholar
Lampert, W., 1987. Feeding and nutrition in Daphnia. In: De, Marchi (ed.), Daphnia. Memorie dell'istituto Italiano Di Idrobiologia. Verbania Pallanza, Italy, pp. 461482.
Lampert, W., 1993. Phenotypic plasticity of the size at first reproduction in Daphnia: the importance of maternal size. Ecology, 74, 14551466.CrossRefGoogle Scholar
Lynch, M., 1989. The life history consequences of resource depression in Daphnia pulex. Ecology, 70, 246247.CrossRefGoogle Scholar
Mckee, D. and Ebert, D., 1996. The interactive effects of temperature, food level and maternal phenotype on offspring size in Daphnia magna. Oecologia, 107, 189196.CrossRefGoogle ScholarPubMed
McMahon, J.W. and Rigler, F.H., 1963. Mechanisms regulating feeding rate of Daphnia magna Straus. Can. J. Zool., 41, 321327.CrossRefGoogle Scholar
Mousseau, T.A. and Fox, C.W., 1998. The adaptive significance of maternal effects. Trends Ecol. Evol., 13, 403407.CrossRefGoogle ScholarPubMed
Naylor, C., Cox, E.J., Bradley, M.C. and Calow, P., 1992. Effect of differing maternal food ration on susceptibility of Daphnia magna Straus neonates to toxic substances. Aquat. Toxicol., 24, 7582.CrossRefGoogle Scholar
Perrin, N., 1989. Population density and OS in the cladoceran Simocephalus vetulus (Müller). Funct. Ecol., 3, 2936.CrossRefGoogle Scholar
Popovic, P., 1996. Ist die negative Interferenz ein allgemeines Phänomen bei Cladoceren? PhD thesis. Westfäalischen Technischen Hochschule Aachen, Germany.Google Scholar
Preuss, T.G., Hammers-Wirtz, M., Hommen, U., Rubach, M.N. and Ratte, H.T., 2009. Development and validation of an individual based Daphnia magna population model: the influence of crowding on population dynamics. Ecol. Model., 220, 310329.CrossRefGoogle Scholar
Preuss, T.G., Hammers-Wirtz, M, Ratte, HT, 2010. The potential of individual based population models to extrapolate effects measured at standardized test conditions to relevant environmental conditions-an example for 3,4-dichloroaniline on Daphnia magna. J. Environ. Monit., 12(11), 20702079.CrossRefGoogle ScholarPubMed
Rinke, K., 2006. Species-oriented model approaches to Daphnia spp.: linking the individual level to the population level. PhD thesis. Technische Universität Dresden, Germany.Google Scholar
Sakwinska, O., 2004. Persistent maternal identity effects on life history traits in Daphnia. Oecologia, 138, 379386.CrossRefGoogle ScholarPubMed
Stibor, H., 1992. Predator induced life-history shifts in a freshwater Cladoceran. Oecologia, 92(2), 162165.CrossRefGoogle Scholar
Stibor, H. and Lüning, H.T., 1994. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol., 8, 97101.CrossRefGoogle Scholar
Taylor, B.E., 1985. Effects of food limitation on growth and reproduction of Daphnia. Arch. Hydrobiol., 21, 285296.Google Scholar
Tessier, A.J. and Consolatti, N.L., 1991. Resource quantity and offspring quality in Daphnia. Ecology, 72, 468478.CrossRefGoogle Scholar
Vanoverbeke, J., 2008. Modelling individual and population dynamics in a consumer resource system: Behavior under food limitation and crowding and the effect on population cycling in Daphnia. Ecol. Model., 216, 385401.CrossRefGoogle Scholar
Wagner, A., Hülsmann, S., Dörner, H., Janssen, M., Kahl, U., Mehner, T. and Benndorf, J., 2004. Initiation of the midsummer decline of Daphnia as related to predation, non-consumptive mortality and recruitment: a balance. Arch. Hydrobiol., 160, 123.CrossRefGoogle Scholar