Published online by Cambridge University Press: 17 May 2013
The influence of the sediment grain size and the trophic status of the reservoirs on the composition, richness and biomass of Oligochaeta community was tested. Samples were taken from the littoral and profundal zones of 30 neotropical reservoirs from six different watersheds during two hydrological periods (dry and rainy seasons). The sample units were ordinated, with principal component analyses, according to differences in the sediment grain size, sample depth and dissolved oxygen. The results of a multiple response permutation procedure (MRPP) analysis revealed significant differences in species composition between littoral and profundal zones, trophic status (oligotrophic, mesotrophic and eutrophic) and different watersheds. The environment–species relationship was tested using redundancy analyses. In order to test which environmental variables, either granulometric or limnological, influenced the Oligochaeta community variability we used a partitioning procedure of inertia. Local variations, including reservoir zone and trophic status, were primarily influenced by differences in sediment type and depth. Significant differences in the total biomass between zones, trophic status, watershed and hydrological period were also demonstrated by a Kruskal–Wallis or Mann–Whitney test. The most prevalent taxa were the cosmopolitan tubificids Bothrioneurum sp. and Branchiura sowerbyi, and the naidids Dero (Dero) digitata and Pristina breviseta, which are dependent on periphyton for food. Higher biomass values were recorded in mesotrophic reservoirs, due to increased nutrient availability and adequate dissolved oxygen supply. Our results indicate that the Oligochaete community structure is directly influenced by local environmental variation in neotropical reservoirs; and that the sediment grain size is the most important factor in determining the Oligochaete community structure.