Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T01:21:43.638Z Has data issue: false hasContentIssue false

Effect of restoration on zooplankton community in a permanent interdunal pond

Published online by Cambridge University Press:  22 May 2013

Maria Anton-Pardo*
Affiliation:
Department of Microbiology and Ecology, ICBIBE, University of Valencia, Spain
Carla Olmo
Affiliation:
Department of Microbiology and Ecology, ICBIBE, University of Valencia, Spain
Juan M. Soria
Affiliation:
Department of Microbiology and Ecology, ICBIBE, University of Valencia, Spain
Xavier Armengol
Affiliation:
Department of Microbiology and Ecology, ICBIBE, University of Valencia, Spain
*
*Corresponding author: [email protected]
Get access

Abstract

Restoration projects in wetlands are becoming increasingly frequent to recover or to create new aquatic ecosystems, after the significant impact and high degradation they have undergone. In the present study, we focused on the changes in the zooplankton community in a permanent peridunal pond where a restoration was carried out in order to increase its surface as a main objective. For this purpose, the community was compared before and after the restoration (15 years before, the year after and between 3 and 6 years later). Significant changes in environmental variables were observed after pond restoration: chlorophyll a concentration decreased and dissolved oxygen increased. Substantial modifications in the aquatic community were also observed, since species richness and diversity increased after restoration: a large number of new species appeared (84%, mainly cladocerans), from external or internal sources. In addition, zooplankton community structure and composition changed from a low specific richness community copepod-dominated in density (mostly nauplii) before restoration, to another one with higher richness and different composition co-dominated in density by rotifers and nauplii, but with greater abundance of cladoceran species. All this suggests an important change in the ecological functioning of the pond, mainly produced by improvement in habitat heterogeneity and water quality after restoration.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfonso, M.T., 1996. Estudio de las comunidades zooplanctónicas de los ecosistemas acuáticos del Parque Natural de la Albufera de Valencia. Dissertation, University of Valencia, Valencia, 310 p.Google Scholar
Alonso, M., 1996. Crustacea. Branchiopoda. Fauna Ibérica, Vol. 7, Museo Nacional de Ciencias Naturales, CSIC, Madrid, 486 p.Google Scholar
Antón-Pardo, M. and Armengol, X., 2010. Zooplankton community from restored peridunal ponds in the Mediterranean region (L'Albufera Natural Park, Valencia, Spain). Limnetica, 29, 133144.Google Scholar
Azémar, F., Maris, T., Mialet, B., Segers, H., Van Damme, S., Meire, P. and Tackx, M., 2010. Rotifers in the Schelde estuary (Belgium): a test of taxonomic relevance. J. Plankton Res., 32, 981997.CrossRefGoogle Scholar
Badosa, A., Frisch, D., Arechederra, A., Serrano, L. and Green, A.J., 2010. Recovery of zooplankton diversity in a restored Mediterranean temporary marsh in Doñana National Park (SW Spain). Hydrobiologia, 654, 6782.CrossRefGoogle Scholar
Brady, V.J., Cardinale, B.J., Gathman, J.P. and Burton, T.M., 2002. Does facilitation of faunal recruitment benefit ecosystem restoration? An experimental sudy of invertebrate assemblages in wetland mesocosms. Restor. Ecol., 10, 617626.CrossRefGoogle Scholar
Brendonck, L. and De Meester, L., 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491, 6584.CrossRefGoogle Scholar
Brouwer, E. and Roelofs, J.G.M., 2001. Degraded softwater lakes: possibilities for restoration. Restor. Ecol., 9, 155166.CrossRefGoogle Scholar
Caceres, C.E. and Soluk, D.A., 2002. Blowing in the wind: a field test to overland dispersal and colonization by aquatic invertebrates. Oecologia, 131, 402408.CrossRefGoogle ScholarPubMed
Canfield, D.E. Jr., Langeland, K.A., Maceina, M.J., Haller, W.T., Shireman, J.V. and. Jones, J.R., 1983. Trophic state classification of lakes with aquatic macrophytes. Can. J. Fish. Aquat. Sci., 40, 17131718.CrossRefGoogle Scholar
Crosetti, D. and Margaritora, F.G., 1987. Distribution and life cycles of cladocerans in temporary pools fromCentral Italy. Freshwat. Biol., 18, 165175.CrossRefGoogle Scholar
Drake, D.C. and Naiman, R.J., 2000. An evaluation of restoration efforts in fishless lakes stocked with exotic trout. Conserv. Biol., 14, 18071820.CrossRefGoogle Scholar
Duggan, I.C., 2001. The ecology of periphytic rotifers. Hydrobiologia, 446/447, 139148.CrossRefGoogle Scholar
Dussart, B., 1969. Les copépodes des eaux continentales d'Europe occidentale, Tome II : Cyclopoïdes et Biologie, Boubee & Cie, Paris, 292 p.Google Scholar
Figuerola, J. and Green, A.J., 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwat. Biol., 47, 483494.CrossRefGoogle Scholar
Frisch, D. and Green, A.J., 2007. Copepods come in first: rapid colonization of new temporary ponds. Fundam. Appl. Limnol., 168, 289297.CrossRefGoogle Scholar
Grillas, P., Gauthier, P., Yavercovski, N. and Perennou, C., 2004. Mediterranean Temporary Pools, Vol. 1, Issues relating to conservation, functioning and management, Tour du Valat, France, 119 p.Google Scholar
Hammer, O., Harper, D.A.T. and Ryan, P.D., 2008. PAST–Palaentological Statistics, ver. 1.81, Sweden, 88 p.Google Scholar
Havel, J.E. and Shurin, J.B., 2004. Mechanisms, effects, and scales of dispersal in freshwater zooplankton. Limnol. Oceanogr., 49, 12291238.CrossRefGoogle Scholar
Hobbs, R.J. and Harris, J.A., 2001. Restoration ecology: repairing the Earth's ecosystems in the new millennium. Restor. Ecol., 9, 239246.CrossRefGoogle Scholar
Jeffrey, E. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylla a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen, 167, 91194.CrossRefGoogle Scholar
Jenkins, K.M. and Boulton, A.J., 2007. Detecting impacts and setting restoration targets in arid-zone rivers: aquatic micro-invertebrates responses to reduced floodplain inundation. J. Appl. Ecol., 44, 823832.CrossRefGoogle Scholar
Jeppesen, E., Jensen, J.P., Kristensen, P., Sondergaard, M., Mortensen, E., Sortkaer, O. and Olrik, K., 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia, 200/201, 219227.CrossRefGoogle Scholar
Jeppesen, E., Noges, P., Davidson, T.A., Haberman, J., Noges, T., Blank, K., Laridsen, T.L., Sondergaard, M., Sayer, C., Laugaste, R., Johansson, L.S., Bjerring, R. and Amsink, S.L., 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia, 676, 279297.CrossRefGoogle Scholar
Keller, W. and Yan, N.D., 1998. Biological recovery from lake acidification: zooplankton communities as a model of patterns and processes. Restor. Ecol., 6, 364375.CrossRefGoogle Scholar
Koste, W., 1978. Rotatoria. Die Räderiere Mitteleuropas, Monogonta, Gebrüder Borntraeger, Berlin, 673 p.Google Scholar
Kuczynska-Kippen, N., 2001. Diurnal vertical distribution of rotifers (Rotifera) in the Chara zone of Budzyńskie Lake, Poland. Hydrobiologia, 446, 195201.CrossRefGoogle Scholar
Louette, G., Declerk, S., Vandekerkhove, J. and De Meester, L., 2009. Evaluation of restoration measures in a shallow lake through a comparison of present day zooplankton communities with historical samples. Restor. Ecol., 17, 629640.CrossRefGoogle Scholar
Mialet, B., Gouzou, J., Azémar, F., Maris, T., Sossou, C., Toumi, N., Van Damme, S., Meire, P. and Tackx, M., 2011. Response of zooplankton to improving water quality in the Scheldt estuary (Belgium). Estuar. Coastal Shelf Sci., 93, 4757.CrossRefGoogle Scholar
Moss, B., Stasfield, J., Irvine, K., Perrow, M. and Phillips, G., 1996. Progressive restoration of a shallow lake: a 12-year experiment in isolation, sediment removal and biomanipulation. J. Appl. Ecol., 33, 7186.CrossRefGoogle Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Kent, J., 2000. Biodiversity hotspots for consevation priorities. Nature, 403, 853858.CrossRefGoogle Scholar
Olmo, C., Armengol, X. and Ortells, R., 2012. Re-establishment of zooplankton communities in temporary ponds after autumn flooding: does restoration age matter? Limnologica, 42, 310319.CrossRefGoogle Scholar
Ortells, R., Olmo, C. and Armengol, X., 2012. Colonization in action: genetic characteristics of Daphnia magna Strauss (Crustacea, Anomopoda) in two recently restored ponds. Hydrobiologia, 689, 3749.CrossRefGoogle Scholar
Pearce, F. and Crivelli, A.J., 1994. Characteristics of Mediterranean Wetlands, Tour du Valat, France, 90 p.Google Scholar
Rennie, M.D. and Jackson, L.J., 2005. The influence of habitat complexity on littoral invertebrate distributions: patterns differ in shallow prairie lakes with and without fish. Can. J. Fish. Aquat. Sci., 62, 20882099.CrossRefGoogle Scholar
Ruiz-Jaen, M.C. and Aide, T.M., 2005. Restoration success: how is it being measured? Restor. Ecol., 13, 569577.CrossRefGoogle Scholar
Scheffer, M., 2004. Ecology of Shallow Lakes, Kluwer Academic Publishers, The Netherlands, 357 p.CrossRefGoogle ScholarPubMed
Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B. and Jeppesen, E., 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol., 8, 275279.CrossRefGoogle ScholarPubMed
Soria, J.M. and Alfonso, M.T., 1993. Relations between physico-chemical and biological characteristics in some coastal intradune ponds near Valencia (Spain). Verh. Int. Ver. Theor. Angew. Limnol., 25, 10091013.Google Scholar
Soria García, J.M., 1988. Estudio limnológico de las malladas de la Devesa de la Albufera, Technical report, Ayuntamiento de Valencia, Oficina Técnica Devesa y Albufera, Valencia, 95 p.Google Scholar
Vandekerkhove, J., Declerck, S., Brendonck, L., Conde Porcuna, J.M., Jeppesen, E. and De Meester, L., 2005. Hatching of cladoceran resting stages: temperature and photoperiod. Freshwat. Biol., 50, 96104.CrossRefGoogle Scholar
Vanschoenwinkel, B., Waterkeyn, A., Vandecaetsbeek, T., Pineau, O., Grillas, P. and Brendock, L., 2008a. Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwat. Biol., 53, 22642273.Google Scholar
Vanschoenwinkel, B., Gielen, S., Seaman, M. and Brendonck, L., 2008b. Anyway the wind blows – frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos, 117, 125134.CrossRefGoogle Scholar
Waterkeyn, A., Vanschoenwinkel, B., Elsen, S., Anton-Pardo, M., Grillas, P. and Brendock, L., 2010. Unintentional dispersal of aquatic invertebrates via footwear and motor vehicles in a Mediterranean wetland area. Aquat. Conserv.: Mar. Freshwat. Ecosyst., 20, 580587.CrossRefGoogle Scholar
Wetzel, R.G., 2001. Limnology. Lake and River Ecosystems, Third edn, Elsevier Academic Press, USA, 1006 p.Google Scholar
Williams, P., Whitfield, M. and Biggs, J., 2008. How can we make new ponds biodiverse? A case study monitored over 7 years. Hydrobiologia, 597, 137148.CrossRefGoogle Scholar
Yan, N.D., Girard, R., Heneberry, J.H., Keller, W.B., Gunn, J.M. and Dillon, P.J., 2004. Recovery of copepod, but not cladoceran, zooplankton from severe and chronic effects of multiple stressors. Ecol. Lett., 7, 452460.CrossRefGoogle Scholar