Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T01:22:01.141Z Has data issue: false hasContentIssue false

Determinants of fish assemblage structure in Mount Itoupé mountain streams (French Guiana)

Published online by Cambridge University Press:  29 April 2013

Sébastien Brosse*
Affiliation:
Laboratoire Évolution et Diversité Biologique, U.M.R 5174 UPS-CNRS-ENFA, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France
Juan I. Montoya-Burgos
Affiliation:
Department of Genetics and Evolution, University of Geneva, Sciences III, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
Gaël Grenouillet
Affiliation:
Laboratoire Évolution et Diversité Biologique, U.M.R 5174 UPS-CNRS-ENFA, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France
Nicolas Surugue
Affiliation:
Parc Amazonien de Guyane, 1 rue Lederson, 97354 Remire-Montjoly, French Guiana
*
*Corresponding author: [email protected]
Get access

Abstract

Fish assemblages inhabiting the mountain streams of the Guiana shield have scarcely been studied. Here we investigated fish assemblages in eight headwater mountain streams of the Mount Itoupé (French Guiana), and tested how local freshwater fish assemblages are shaped by environmental characteristics. We show that Mount Itoupé streams host uneven species assemblages, characterized by low species richness (less than ten species per site) and a high proportion of small Siluriform species. Differences in fish assemblage composition between the sites were mainly due to basin identity, but regional climate and position of the site in the river gradient also had a significant effect, although of lower magnitude. In contrast, local habitat hardly affected fish richness, abundances or assemblage composition. Species richness increased along the upstream–downstream gradient, whereas fish abundance depended mainly on the slope orientation of Mount Itoupé. Although these results need confirmation on a larger amount of sampling sites, located on other Guianese mountains, this preliminary study shows that the mountain streams of the Guiana Shield, although rarely investigated, host not only uneven species assemblages, but also present an original combination of environmental determinants shaping fish assemblage structure. Those rare and original ecosystems hence deserve more attention and should be preserved from human disturbances.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araújo, F.G., Pinto, B.C.T. and Teixeira, T.P., 2009. Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: evaluating environmental influences and some concepts in river ecology. Hydrobiologia, 618, 89107.CrossRefGoogle Scholar
Baigorria, G.A., Villegas, E.B., Trebejo, I., Carlos, J.F. and Quiroz, R., 2004. Atmospheric transmissivity: distribution and empirical estimation around the central Andes. Int. J. Climatol., 24, 11211136.CrossRefGoogle Scholar
Barletta, M., Jaureguizar, A.J., Baigun, C., Fontoura, N.F., Agostinho, A.A., Almeida-Val, V.M.F., Val, A.L., Torres, R.A., Jimenes-Segura, L.F., Giarrizzo, T., Fabre, N.N., Batista, V.S., Lasso, C., Taphorn, D.C., Costa, M.F., Chaves, P.T., Vieira, J.P. and Correa, M.F.M., 2010. Fish and aquatic habitat conservation in South America: a continental overview with emphasis on neotropical systems. J. Fish Biol., 76, 21182176.CrossRefGoogle ScholarPubMed
Brosse, S., Grenouillet, G., Gevrey, M., Khazraie, K. and Tudesque, L., 2011. Small-scale gold mining erodes fish assemblage structure in neotropical streams. Biodivers. Conserv., 20, 10131026.CrossRefGoogle Scholar
Cardoso, Y.P. and Montoya-Burgos, J.I., 2009. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a neotropical center of endemism: the Guyanas region. Mol. Ecol., 18, 947964.CrossRefGoogle Scholar
Covain, R., Fisch-Muller, S., Montoya-Burgos, J.I., Mol, J.H., Le Bail, P.Y. and Dray, S. 2012. The Harttiini (Siluriformes, Loricariidae) from the Guianas: a multi-table approach to assess their diversity, evolution, and distribution. Cybium, 36, 115161.Google Scholar
de Mérona, B., Tejerina-Garro, F.L. and Vigouroux, R., 2012. Fish-habitat relationships in French Guiana rivers: a review. Cybium, 36, 715.Google Scholar
de Thoisy, B., Richard-Hansen, C., Goguillon, B., Joubert, P., Obstancias, J., Winterton, P. and Brosse, S., 2010. Rapid evaluation of threats to biodiversity: human footprint score and large vertebrate species responses in French Guiana. Biodivers. Conserv., 19, 15671584.CrossRefGoogle Scholar
Dibble, E.D. and Pelicice, F.M., 2010. Influence of aquatic plant-specific habitat on an assemblage of small neotropical floodplain fishes. Ecol. Freshw. Fish, 19, 381389.CrossRefGoogle Scholar
Ferreira, F.C. and Petrere, M., 2009. The fish zonation of the Itanhaem river basin in the Atlantic forest of southeast Brazil. Hydrobiologia, 636, 1134.CrossRefGoogle Scholar
Gorman, O.T. and Karr, J.R., 1978. Habitat structure and stream fish ecology. Ecology, 59, 507515.CrossRefGoogle Scholar
Grossman, G.D., Ratajczak, R.E., Crawford, M. and Freeman, M.C., 1998. Assemblage organization in stream fishes: effects of environmental variation and interspecific interactions. Ecol. Monogr., 68, 395420.CrossRefGoogle Scholar
Hammond, D.S., Gond, V., de Thoisy, B., Forget, P.M. and DeDijn, B., 2007. Causes and consequences of a tropical forest gold rush in the Guiana Shield, South America. Ambio, 36, 661670.CrossRefGoogle ScholarPubMed
Hubert, N. and Renno, J.F., 2006. Historical biogeography of South American freshwater fishes. J. Biogeogr., 33, 14141436.CrossRefGoogle Scholar
Huet, M., 1959. Profiles and biology of western European streams as related to fisheries management. Trans. Am. Fish. Soc., 88, 155163.CrossRefGoogle Scholar
Hugueny, B., 1989. West-African rivers as biogeographic islands – species richness of fish communities. Oecologia, 79, 236243.CrossRefGoogle Scholar
Ibanez, C., Belliard, J., Hughes, R.M., Irz, P., Kamdem-Toham, A., Lamouroux, N. and Oberdorff, T., 2009. Convergence of temperate and tropical stream fish assemblages. Ecography, 32, 658670.CrossRefGoogle Scholar
Ibarra, A.A., Park, Y.S., Brosse, S., Reyjol, Y., Lim, P. and Lek, S., 2005. Nested patterns of diversity revealed for fish assemblages in rivers of SW France. Ecol. Freshw. Fish, 14, 233242.CrossRefGoogle Scholar
Jackson, D.A., Peres-Nieto, P.R. and Olden, J.D., 2001. What controls who is where in freshwater fish communities – the roles of biotic, abiotic, and spatial factors. Can. J. Fish. Aquat. Sci., 58, 157170.Google Scholar
Jackson, J.K. and Sweeney, B.W., 1995. Present status and future directions of tropical stream research. J. N. Am. Benthol. Soc., 14, 511.CrossRefGoogle Scholar
Keith, P., Le Bail, P.Y. and Planquette, P., 2000. Atlas des poisons d'eau douce de Guyane (Tome 2- fascicule 1), MNHN, Paris, France, 286 p.Google Scholar
Le Bail, P.Y., Keith, P. and Planquette, P., 2000. Atlas des poisons d'eau douce de Guyane (Tome 2- fascicule 2), MNHN, Paris, France, 307 p.Google Scholar
Le Bail, P.Y., Covain, R., Jegu, M., Fish-Muller, S., Vigouroux, R. and Keith, P., 2012. Updated checklist of the freshwater and estuarine fishes of French Guiana. Cybium, 36, 293319.Google Scholar
Leprieur, F., Tedesco, P.A., Hugueny, B., Beauchard, O., Dürr, H.H., Brosse, S. and Oberdorff, T., 2011. Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecol. Lett., 14, 325334.CrossRefGoogle ScholarPubMed
MacArthur, R.H. and Wilson, E.O., 1967. The Theory of Island Biogeography, Princeton University Press: Princeton, New Jersey, 203 p.Google Scholar
Mérigoux, S. and Ponton, D., 1999. Spatio-temporal distribution of young fish in tributaries of natural and flow-regulated sections of a neotropical river in French Guiana. Freshw. Biol., 42, 177198.Google Scholar
Mérigoux, S., Ponton, D. and de Mérona, B., 1998. Fish richness and species-habitat relationships in two coastal streams of French Guiana, South America. Environ. Biol. Fish., 51, 2539.CrossRefGoogle Scholar
Mol, J.H., Wan Tong You, K., Vrede, I., Flynn, A., Ouboter, P. and van der Lugt, F., 2007. Fishes of Lely and Nassau mountains, Suriname. In: Alonzo, M.E. and Mol, J.H. (eds), A rapid biological assessment of the Lely and Nassau plateaus, Suriname (with additional information on the Brownsberg Plateau). The RAP Bulletin of Biological Assessment. 43. Conservation International, 276 p.Google Scholar
Mol, J.H., Vari, R.P., Covain, R., Willink, P.W. and Fisch-Muller, S., 2012. Annotated checklist of the freshwater fishes of Suriname. Cybium, 36, 263292.Google Scholar
Oberdorff, T., Tedesco, P.A., Hugueny, B., Leprieur, F., Beauchard, O., Brosse, S. and Dürr, H.H., 2011. Global and regional patterns in riverine fish species richness – a review. Int. J. Ecol. (Article ID 967631, 12 pages, doi:10.1155/2011/967631).CrossRefGoogle Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G.L., Stevens, M.H.H. and Wagner, H., 2008. VEGAN: community ecology package, v.1.13-8.
Pinto, B.C.T., Araujo, F.G., Rodriguez, V.D. and Hugues, R.M., 2009. Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paraıba do Sul, Brazil. Freshw. Biol., 54, 26002615.CrossRefGoogle Scholar
Planquette, P., Keith, P. and Le Bail, P.Y., 1996. Atlas des poisons d'eau douce de Guyane (Tome 1), MNHN Paris, France, 429 p.Google Scholar
R Core Team Development, 2008. R: A Language and Environment for Statistical Computing, R foundation for Statistical Computing, Vienna, Austria.PubMed
Tedesco, P.A., Leprieur, F., Hugueny, B., Brosse, S., Durr, H.H., Beauchard, O., Busson, F. and Oberdorff, T., 2012. Patterns and processes of global riverine fish endemism. Global Ecol. Biogeogr., 21, 977987.CrossRefGoogle Scholar
Tonn, W.M., 1990. Climate change and fish communities: a conceptual framework. Trans. Am. Fish. Soc., 119, 337352.2.3.CO;2>CrossRefGoogle Scholar
Vannote, R.L., Minshall, G.W., Cummings, K.W., Sedell, J.R. and Cushing, C.E., 1980. The river continuum concept. Can. J. Fish. Aquat. Sci., 37, 130137.CrossRefGoogle Scholar