Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T01:22:14.802Z Has data issue: false hasContentIssue false

Concordance between Ephemeroptera and Trichoptera assemblage in streams from Cerrado – Amazonia transition

Published online by Cambridge University Press:  18 June 2013

Leandro Juen*
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Correia, no 1 Bairro Guamá, 66.075-110 Belém, PA, Brazil
Denis S. Nogueira
Affiliation:
Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Caixa Postal 24.241, 74.690-970 Goiânia, GO, Brazil
Yulie Shimano
Affiliation:
Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Rua Augusto Correia, no 1 Bairro Guamá, 66.075-110 Belém, PA, Brazil
Ludgero C. Galli Vieira
Affiliation:
Universidade de Brasília, Campus de Planaltina (FUP), Área Universitária 1, Vila Nossa Senhora de Fátima, 73.340-710 Planaltina, DF, Brazil
Helena S. R. Cabette
Affiliation:
Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Caixa Postal 08, 78.690-000 Nova Xavantina, Mato Grosso, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

We evaluated the concordance between assemblages of Ephemeroptera and Trichoptera to verify if they respond similarly to environmental gradients in the basin of Suiá-Missu river in Mato Grosso, central Brazil. We tested the predictions that: (i) the distributional pattern of mayfly and caddisfly larvae is concordant along the spatial and (ii) environmental variation along the basin, and if (iii) taxa are concordant between themselves along the seasons and with the environmental gradients disregarding the seasons of the year. We found a concordance between species composition of mayfly and caddisfly in fall-water and rainy period, when analyzed separately by each season. The concordance between environmental variables and the two taxa analyzed separately also was concordant, but only on the fall-water season. Finally, we found congruence when both analyzed groups disregarded the temporal effect, but it was less representative than when we consider the seasons variation. Our results suggest that the hydrological cycle could be a driver of changes in species composition of mayflies and caddisflies.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, A.P., Whittier, T.R., Kaufmann, P.R., Larsen, D.P., O'Connor, R.J., Hughes, R.M., Stemberger, R.S., Dixit, S.S., Brinkhurst, R.O., Herlihy, A.T. and Paulsen, S.G., 1999. Concordance of taxonomic richness patterns across multiple assemblages in lakes of the northeastern United States. Can. J. Fish Aquat. Sci., 56, 739747.CrossRefGoogle Scholar
Angrisano, E.B. and Korob, P.G., 2001. Trichoptera. In: Fernández, H.R. and Domínguez, E. (eds.), Guia para la identificacion de los artrópodos bentônicos sudamericanos, Editorial Universitaria de Tucumám, Tucamám, 5592.Google Scholar
Bini, L.M., Vieira, L.C.G., Machado, J. and Velho, L.F.M., 2007. Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. Int. Rev. Hydrobiol., 92, 922.CrossRefGoogle Scholar
Bini, L.M., Silva, L.C.F., Velho, L.F.M., Bonecker, C.C. and Lansac-Toha, F.A., 2008. Zooplankton assemblage concordance patterns in Brazilian reservoirs. Hydrobiologia, 598, 247255.CrossRefGoogle Scholar
Bispo, P.C., Oliveira, L.G., Crisci-Bispo, V.L. and Silva, M.M., 2001. A pluviosidade como fator de alteração da entomofauna bentônica (Ephemeroptera, Plecoptera e Trichoptera) em córregos do Planalto Central do Brasil. Acta Limnol. Bras., 13, 19.Google Scholar
Bowman, M.F., Ingram, R., Reid, R.A., Somers, K.M., Yan, N.D., Paterson, A.M., Morgan, G.E. and Gunn, J.M., 2008. Temporal and spacial concordance in community composition of phytoplakton, zooplakton, macroinvertebrate, crayfish, and fish on Precambrian Shield. Can. J. Fish Aquat. Sci., 65, 919932.CrossRefGoogle Scholar
Brittain, J.E., 1982. Biology of mayflies. Annu. Rev. Entomol., 27, 119147.CrossRefGoogle Scholar
Cameron, S.E., Williams, K.J. and Mitchell, D.K., 2008. Efficiency and concordance of alternative methods for minimizing opportunity costs in conservation planning. Conserv. Biol., 22, 886896.CrossRefGoogle ScholarPubMed
Carvalho, N.D.O., Cafe, F.A., Mota, G.D.O., Franco, H.C.D.B. and Braga, A., 2004. Assessment of the sedimentation in the reservoirs of the Belo Monte hydroelectric complex, Xingu River, Brazil. In: Proceedings of the Ninth International Symposium on River Sedimentation, Vols 1–4, 233242.Google Scholar
Colwell, R.K., 2005. EstimateS: statistical estimation of species richness and shared species from samples. Version 7.5.
Couceiro, S.R.M., Hamada, N., Forsberg, B.R. and Padovesi-Fonseca, C., 2010. Effects of anthropogenic silt on aquatic macroinvertebrates and abiotic variables in streams in the Brazilian Amazon. J. Soils Sediments, 10, 89103.CrossRefGoogle Scholar
DeChaine, E.G. and Martin, A.P., 2005. Historical biogeography of two alpine butterflies in the Rocky Mountains: broad-scale concordance and local-scale discordance. J. Biogeogr., 32, 19431956.CrossRefGoogle Scholar
Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M. and Nieto, C., 2006. Ephemeroptera of South America, Pensoft Publ., Moscow, 646 p.Google Scholar
Faith, D.P., 2003. Environmental diversity (ED) as surrogate information for species-level biodiversity. Ecography, 26, 374379.CrossRefGoogle Scholar
Gauch, H.G., 1982. Multivariate Analysis in Community Ecology, Cambridge University Press, Cambridge, 312 p.CrossRefGoogle Scholar
Grenouillet, G., Brosse, S., Tudesque, L., Lek, S., Baraillé, Y. and Loot, G., 2008. Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Divers Distrib., 14, 592603.CrossRefGoogle Scholar
Heino, J., 2002. Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodivers. Conserv., 11, 137147.CrossRefGoogle Scholar
Heino, J., 2010. Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol. Indic., 10, 112117.CrossRefGoogle Scholar
Heino, J. and Mykrä, H., 2006. Assessing physical surrogates for biodiversity: Do tributary and stream type classifications reflect macroinvertebrate assemblage diversity in running waters? Biodivers. Conserv., 129, 418426.Google Scholar
Heino, J., Muotka, T. and Paavola, R., 2003. Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. J. Animal Ecol., 72, 425434.CrossRefGoogle Scholar
Heino, J., Paavola, R., Virtanen, R. and Muotka, T., 2005. Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodivers. Conserv., 14, 415428.CrossRefGoogle Scholar
Hynes, H.B.N., 1970. The ecology of stream insects. Annu. Rev. Entomol., 15, 2542.CrossRefGoogle Scholar
Jackson, D.A., 1995. Protest – a Procrustean randomization test of community environment concordance. Ecoscience, 2, 297303.CrossRefGoogle Scholar
Jackson, D.A. and Harvey, H.H., 1993. Fish and benthic invertebrates: community concordance and community-environment relationships. Can. J. Fish Aquat. Sci., 50, 26412651.CrossRefGoogle Scholar
Juen, L. and De Marco, P., 2011. Odonata biodiversity in terra-firme forest streamlets in Central Amazonia: on the relative effects of neutral and niche drivers at small geographical extents. Insect. Conserv. Diver., 4, 265274.CrossRefGoogle Scholar
Junk, W.J., Bayley, P.B. and Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. In: Dodge, D.P. (ed.), Proceedings of the International Large River Symposium, 110127.Google Scholar
Landeiro, V.L., Bini, L.M., Melo, A.S., Pes, A.M.O. and Magnusson, W.E., 2012. The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshwater Biology, 57, 15541564.CrossRefGoogle Scholar
Melo, A.S. and Froehlich, C.G., 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. J. N. Am. Benthol. Soc., 20, 116.CrossRefGoogle Scholar
Melo, A.S., Niyogi, D.K., Matthaei, C.D. and Townsend, C.R., 2003. Resistance, resilience, and patchiness of invertebrate assemblages in native tussock and pasture streams in New Zealand after a hydrological disturbance. Can. J. Fish Aquat. Sci., 60, 731739.CrossRefGoogle Scholar
Monaghan, K.A. and Soares, A.M.V.M., 2010. The bioassessment of fish and macroinvertebrates in a Mediterranean–Atlantic climate: habitat assessment and concordance between contrasting ecological samples. Ecol. Indic., 10, 184191.CrossRefGoogle Scholar
Nessimian, J.L., Venticinque, E.M., Zuanon, J., De Marco, P. Jr., Gordo, M., Fidelis, L., Batista, J.D. and Juen, L., 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia, 614, 117131.CrossRefGoogle Scholar
Nogueira, D.S., Cabette, H.S.R. and Juen, L., 2011. Estrutura e composição da comunidade de Trichoptera (Insecta) de rios e áreas alagadas da Bacia do rio Suiá-Missu, Mato Grosso, Brasil, Iheringia. Sér. Zool., 101, 173180.CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H. and Wagner, H., 2011. Vegan: Community Ecology Package. R package version 2.0-2. http://CRAN.R-project.org/package=vegan.
Olden, J.D., Jackson, D.A. and Peres-Neto, P.R., 2001. Spatial isolation and fish communities in drainage lakes. Oecologia, 127, 572585.CrossRefGoogle ScholarPubMed
Paavola, R., Muotka, T., Virtanen, R., Heino, J. and Kreivi, P., 2003. Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshwater Biol., 48, 19121923.CrossRefGoogle Scholar
Paszkowski, C.A. and Tonn, W.M., 2000. Community concordance between the fish and aquatic birds of lakes in northern Alberta, Canada: the relative importance of environmental and biotic factors. Freswater Biol., 43, 421437.CrossRefGoogle Scholar
Pes, A.M.O., Hamada, N. and Nessimian, J.L., 2005. Chaves de identificação de larvas para famílias e gêneros de Trichoptera (Insecta) da Amazônia Central, Brasil. Revta Bras. Ent., 49, 181204.CrossRefGoogle Scholar
Ratter, J.A., Askew, G.P., Montgomery, R.F. and Gifford, D.R., 1978. Observations on the vegetation of northeastern Mato Grosso II. Forest and Soils of the Rio Suiá-Missu area. R. Soc. Lond., 293, 191208.CrossRefGoogle Scholar
R Development Core Team, 2011. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.PubMed
Riva, A.L.M., Fonseca, L.F.L. and Hasenclever, L., 2007. Instrumentos econômicos e financeiros para a conservação ambiental no Brasil: Uma análise do estado da arte no Brasil e no Mato Grosso, desafios e perspectivas, Instituto Socioambiental – ISA, São Paulo, 138 p.Google Scholar
Roque, F.O., Lima, D.V.M., Siqueira, T., Vieira, L.J.S., Stefanes, M. and Trivino-Strixino, S., 2012. Concordance between macroinvertebrates communities and the typological classification of White and clear-water streams in western Brazilian Amazonia. Biota Neotropical, 12, 8392.CrossRefGoogle Scholar
Rosenberg, D.M. and Resh, V.H., 1993. Introduction to freshwater biomonitoring and benthic macroinvertebrates. In: Rosenberg, D.M. and Resh, V.H. (eds.), Freshwater Biomonitoring and Benthic Macroinvertebrates, Chapman and Hall, New York, 19.Google Scholar
Shimano, Y., Cabette, H.S.R., Salles, F.F. and Juen, L., 2010. Composição e distribuição da fauna de Ephemeroptera (Insecta) em área de transição Cerrado-Amazônia, Brasil. Iheringia, 100, 301308.CrossRefGoogle Scholar
Siqueira, T., Bini, L.M., Roque, F.O. and Correnie, K., 2012. A metacommunity framework for enhancing the effectiveness of biological monitoring strategies. Plos One, 7, 112.CrossRefGoogle ScholarPubMed
Strahler, H.N., 1957. Quantitative analysis of watershed geomorphology. Am. Geophys. Union Trans., 38, 913920.CrossRefGoogle Scholar
Tolonen, K.T., Holopainen, I.J., Hamalainen, H., Rahkola-Sorsa, M., Ylostalo, P., Mikkonen, K. and Karjalainen, J., 2005. Littoral species diversity and biomass: concordance among organism groups and the effects of environmental variables. Biodivers. Conserv., 14, 961980.CrossRefGoogle Scholar
Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R. and Cushing, C.E., 1980. The river continuum concept. Can. J. Fish Aquat. Sci., 37, 130137.CrossRefGoogle Scholar
Wiggins, G.B., 1996. Larvae of the North American Caddisfly Genera (Trichoptera), University of Toronto Press, Toronto, 457 p.Google Scholar
Wiggins, G.B. and Mackay, R.J., 1978. Some relationships between systematics and trophic ecology in Neartic aquatic insects, with special references to Trichoptera. Ecology, 59, 12111220.CrossRefGoogle Scholar
Zar, J.H., 1999. Biostatistical Analysis, Prentice–Hall, Englewood Cliffs, NJ, 960 p.Google Scholar