Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T23:44:58.463Z Has data issue: false hasContentIssue false

Competitive outcome between the rotifer Brachionus calyciflorus and the cladoceran Moina macrocopa depends on algal density but not temperature

Published online by Cambridge University Press:  20 March 2014

Lin Huang
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, Anhui 237012, China
Yilong Xi*
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Xueling Wang
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Mengning Xia
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Ying Han
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
Xinli Wen
Affiliation:
College of Life Sciences, Anhui Normal University, Provincial Key Laboratories of Conservation and Utilization for Important Biological Resource in Anhui & Biotic Environment and Ecological Safety, Wuhu, Anhui 241000, China
*
*Corresponding author: [email protected]
Get access

Abstract

The rotifer Brachionus calyciflorus often occurs simultaneously with the cladoceran Moina macrocopa in tropical water bodies. We studied the effects of temperature (20, 25 and 30°C) and algal density (0.5, 1.0 and 3.0×106 cells.mL−1Scenedesmus obliquus) on the outcome of competition and duration of coexistence between B. calyciflorus and M. macrocopa using population growth experiments. The results showed that regardless of temperature, M. macrocopa outcompeted B. calyciflorus at the lowest algal density (0.5×106 cells.mL−1), whereas B. calyciflorus outcompeted M. macrocopa at the higher algal densities (1.0 and 3.0×106 cells.mL−1). The duration of coexistence shortened with increasing temperature when M. macrocopa outcompeted B. calyciflorus, and those with increasing temperature and algal density when B. calyciflorus outcompeted M. macrocopa. Our results suggested that the competitive outcome between the rotifer B. calyciflorus and the cladoceran M. macrocopa was dependent on algal density but not temperature, the duration of coexistence between them was dependent on algal density and temperature, and the exploitative competition of M. macrocopa over B. calyciflorus may be more important than the interference competition.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, M.H., 2011. Effect different concentrations of cadmium on population growth and competition of the Cladoceran Moina macrocopa and the rotifer Brachionus calyciflorus. In: Proceedings of the 4th Global Fisheries and Aquaculture Research Conference, the Egyptian International Center for Agriculture, Giza, Egypt, 467476.Google Scholar
Allan, J.D., 1976. Life history patterns in zooplankton. Amer. Natural., 110, 165180.CrossRefGoogle Scholar
Arndt, H., 1993. Rotifers as predators on components of the microbial food web-a review. Hydrobiologia, 255/256, 231246.CrossRefGoogle Scholar
Begon, M., Harper, J.L. and Townsend, C.R., 1996. Ecology, Individuals, Populations and Communities (3rd edn,), Blackwell Science Ltd., Oxford, 1068 p.CrossRefGoogle Scholar
Benider, A., Tifnouti, A. and Pourriot, R., 2002. Growth of Moina macrocopa (Straus 1820) (Crustacea, Cladocera): influence of trophic conditions, population density and temperature. Hydrobiologia, 468, 111.CrossRefGoogle Scholar
Berlow, E.L., Dunne, J.A., Martinez, N.D., Stark, P.B., Williams, R.J. and Brose, U., 2009. Simple prediction of interaction strengths in complex food webs. Proc. Natl. Acad. Sci. USA, 106, 187191.CrossRefGoogle ScholarPubMed
Birch, L.C., 1957. The meanings of competition. Amer. Natural., 91, 518.CrossRefGoogle Scholar
Burak, E.S., 1997. Life tables of Moina macrocopa (Straus) in successive generations under food and temperature adaptation. Hydrobiologia, 360, 101108.CrossRefGoogle Scholar
Chase, J.M., Abrams, P.A., Grover, J.P., Diehl, S., Chesson, P., Holt, R.D., Richards, S.A., Nisbet, R.M. and Case, T.J., 2002. The interaction between predation and competition: a review and synthesis. Ecol. Lett., 5, 302315.CrossRefGoogle Scholar
Chen, T., Wang, Y., Huang, C., Hu, S. and Zhang, J., 2004. Interspecific interaction between Moina mongolica and Brachionus plicatilis. Chin. J. Appl. Ecol., 15, 12531256.Google ScholarPubMed
Conde-Porcuna, J.M., 2000. Relative importance of competition with Daphnia (Cladocera) and nutrient limitation on Anuraeopsis (Rotifera) population dynamics in a laboratory study. Freshw. Biol., 44, 423430.CrossRefGoogle Scholar
de Bernardi, R., Giussani, G. and Manca, M., 1987. Cladocera: predators and prey. Hydrobiologia, 145, 225243.CrossRefGoogle Scholar
DeMott, W.R., 1989. The role of competition in zooplankton succession. In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer, New York, 195252.CrossRefGoogle Scholar
Deng, D.G., Meng, Q., Mao, K.Y., Zhang, S., Feng, N.S. and Xiao, Q.Q., 2009. Effect of temperature and interspecific competition on population dynamics and sexual reproduction of Daphnia magna (in Chinese with English abstract). Acta Ecol. Sin., 29, 63516358.Google Scholar
Dodson, S.I., 1974. Zooplankton competition and predation: an experimental test of the size efficiency hypothesis. Ecology, 55, 605613.CrossRefGoogle Scholar
Dodson, S.I., 2005. Introduction to Limnology, McGraw-Hill, New York.Google Scholar
Dong, L.L., Xi, Y.L., Liu, G.Y., Chen, F., Ge, Y.L. and Wen, X.L., 2004. Effect of temperature and food concentration on the population dynamics of three Brachionus calyciflorus strains (in Chinese with English abstract). Chin. J. Appl. Ecol., 15, 21652169.Google Scholar
Downing, J.A. and Rigler, F.H. (eds), 1984. A Manual for the Methods of Assessment of Secondary Productivity in Fresh Waters, 2nd edn, IBP Handbook 17, Blackwell Scientific Publ., London, 501 p.Google Scholar
Dumont, H.J., Green, J. and Masundire, H. (eds), 1994. Studies on the ecology of tropical zooplankton. In: Hydrobiologia, vol. 272/Developments in Hydrobiology, Dordrecht, Vol. 92, 304 p.Google Scholar
Dumont, H.J., Sarma, S.S.S. and Ali, A.J., 1995. Laboratory studies on the population dynamics of Anuraeopsis fissa (Rotifera) in relation to food density. Freshw. Biol., 33, 3946.CrossRefGoogle Scholar
Espinosa-Rodríguez, C.A., Sarma, S.S.S. and Nandini, S., 2012. Interactions between the rotifer Euchlanis dilatata and the cladocerans Alona glabra and Macrothrix triserialis in relation to diet type. Limnologica, 42, 5055.CrossRefGoogle Scholar
Feniova, I.Y. and Zilitinkevich, N.S., 2012. Dependence of demographic parameters and results of competition on temperature in cladocerans. Russ. J. Ecol., 43, 131136.CrossRefGoogle Scholar
Feniova, I.Y., Razlutsky, V.I. and Palash, A.L., 2011. Temperature effects of interspecies competition between cladoceran species in experimental conditions. Inland Water Biol., 4, 6571.CrossRefGoogle Scholar
Fernández-Araiza, M.A., Sarma, S.S.S. and Nandini, S., 2005. Combined effects of food concentration and temperature on competition among four species of Brachionus (Rotifera). Hydrobiologia, 546, 519534.CrossRefGoogle Scholar
Fussmann, G., 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities: an enclosure study. J. Plankton Res., 18, 18971915.CrossRefGoogle Scholar
Gama-Flores, J.L., Sarma, S.S.S. and Nandini, S., 2006. Effect of cadmium level and exposure time on the competition between zooplankton species Moina macrocopa (Cladocera) and Brachionus calyciflorus (Rotifera). J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 41, 10571070.CrossRefGoogle Scholar
Gilbert, J.J., 1985. Competition between rotifers and Daphnia. Ecology, 66, 19431950.CrossRefGoogle Scholar
Gilbert, J.J., 1988a. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr., 33, 12861303.CrossRefGoogle Scholar
Gilbert, J.J., 1988b. Susceptibilities of ten rotifer species to interference from Daphnia pulex. Ecology, 69, 18261838.CrossRefGoogle Scholar
Gliwicz, Z.M., 1990. Food thresholds and body size in cladocerans. Nature, 343, 638640.CrossRefGoogle Scholar
He, Z.H., 1983. The effects of temperature on the reproductive ability and innate capacity for increase (r m) of Moina macrocopa Straus (in Chinese with English abstract). J. Dalian Fisheries Univ., 1, 1320.Google Scholar
Holbrook, S.J. and Schmitt, R.J., 1989. Resource overlap, prey dynamics, and the strength of competition. Ecology, 70, 19431953.CrossRefGoogle Scholar
Hurtado-Bocanegra, M.D., Nandini, S. and Sarma, S.S.S., 2002. Combined effects of food level and inoculation density on competition between Brachionus patulus (Rotifera) and the cladocerans Ceriodaphnia dubia and Moina macrocopa. Hydrobiologia, 468, 1322.CrossRefGoogle Scholar
Hutchinson, G.E., 1967. A Treatise on Limnology. Vol. 2. Introduction to the Lake Biology and the Limnoplankton. John Wiley & Sons, New York, 1115 p.Google Scholar
Iyer, N. and Rao, T.R., 1993. Effect of the epizoic rotifer Brachionus rubens on the population growth of three cladoceran species. Hydrobiologia, 255/256, 325332.CrossRefGoogle Scholar
Kak, A. and Rao, T.R., 1998. Does the evasive behaviour of Hexarthra influence its competition with cladocerans? Hydrobiologia, 387/388, 409419.CrossRefGoogle Scholar
Kauler, P. and Enesco, H.E., 2011. The effect of temperature on life history parameters and cost of reproduction in the rotifer Brachionus calyciflorus. J. Freshw. Ecol., 26, 399408.CrossRefGoogle Scholar
Kirk, K.L., 1997. Life-history responses to variable environments: starvation and reproduction in planktonic rotifers. Ecology, 78, 434441.CrossRefGoogle Scholar
Krebs, C.J., 1985. Ecology: the experimental analysis of distribution and abundance, Harper & Row, New York.
Lampert, W. and Rothhaupt, K.O., 1991. Alternating dynamics of rotifers and Daphnia magna in a shallow lake. Arch. Hydrobiol., 120, 447456.Google Scholar
Lampert, W. and Sommer, U., 1997. Limnoecology: the Ecology of Lakes and Streams, Oxford University Press, New York, 382 p.Google Scholar
Laska, M.S. and Wootton, J.T., 1998. Theoretical concepts and empirical approaches to measuring interaction strength. Ecology, 79, 461476.CrossRefGoogle Scholar
Li, S., Zhu, H., Xia, Y., Yu, M., Liu, K., Ye, Z. and Chen, Y., 1959. The mass culture of unicellular green algae (in Chinese with English abstract). Acta Hydrobiol. Sin., 4, 462472.Google Scholar
Lucía-Pavónm, E., Sarma, S.S.S. and Nandini, S., 2001. Effect of different densities of live and dead Chlorella vulgaris on the population growth of rotifers Brachionus calyciflorus and Brachionus patulus (Rotifera). Rev. Biol. Trop., 49, 821823.Google Scholar
MacIsaac, H.J. and Gilbert, J.J., 1990. Does exploitative or interference competition from Daphnia limit the abundance of keratella in Loch Leven? A reassessment of May and Jones (1989). J. Plankton Res., 12, 13151322.CrossRefGoogle Scholar
MacIsaac, H.J. and Gilbert, J.J., 1991. Discrimination between exploitative and interference competition between Cladocera and Keratella cochlearis. Ecology, 72, 924937.CrossRefGoogle Scholar
Nandini, S. and Sarma, S.S.S., 2002. Competition between the Rotifers Brachionus patulus and Euchlanis dilatata: effect of algal food level and relative initial densities of competing species. Russ. J. Ecol., 33, 291295.CrossRefGoogle Scholar
Nandini, S. and Sarma, S.S.S., 2003. Population growth of some genera of cladocerans (Cladocera) in relation to algal food (Chlorella vulgaris) levels. Hydrobiologia, 491, 211219.CrossRefGoogle Scholar
Nandini, S., Sarma, S.S.S., Amador-López, R.J. and Bolaños-Muñioz, S., 2007a. Population growth and body size in five rotifer species in response to variable food concentration. J. Freshw. Ecol., 22, 110.CrossRefGoogle Scholar
Nandini, S., Picazo-Paez, E.A. and Sarma, S.S.S., 2007b. The combined effects of heavy metals (copper and zinc), temperature and food (Chlorella vulgaris) level on the demographic characters of Moina macrocopa (Crustacea: Cladocera). J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng., 42, 14331442.CrossRefGoogle Scholar
Nogrady, T., Wallace, R.L. and Snell, T.W., 1993. Rotifera: Vol. 1: Biology, Ecology and Systematics, SBP Academic Publishers, The Hague, 142 p.Google Scholar
Pollard, A.I., Gonzalez, M.J., Vanni, M.J. and Headworth, J.L., 1998. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. Hydrobiologia, 387/388, 215223.CrossRefGoogle Scholar
Rall, B.C., Vucic-Pestic, O., Ehnes, R.B., Emmerson, M. and Brose, U., 2010. Temperature, predator-prey interaction strength and population stability. Glob. Change Biol., 16, 21452157.CrossRefGoogle Scholar
Romanovsky, Y.E., 1984. Individual growth rate as a measure of competitive advantages in cladoceran crustaceans. Int. Rev. Ges. Hydrobiol., 69, 613632.CrossRefGoogle Scholar
Rothhaupt, K.O., 1990. Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnol. Oceanogr., 35, 1623.CrossRefGoogle Scholar
Sarma, S.S.S. and Rao, T.R., 1990. Population dynamics of Brachionus patulus Müller (Rotifera) in relation to food and temperature. Proc. Ind. Acad. Sci. (Animal Sciences), 99, 335343.CrossRefGoogle Scholar
Sarma, S.S.S., Franco-Téllez, J.L. and Nandini, S., 2008. Effect of algal food (Chlorella vulgaris) concentration and inoculation density on the competition among three planktonic Brachionidae (Rotifera: Monogononta). Hidrobiológica, 18, 123132.Google Scholar
Song, D.X., 1962. Studies on the culturing of Daphnia magna Straus (crustacean, cladocera) (in Chinese with English abstract). Acta Zool. Sin., 14, 4962.Google Scholar
Stelzer, C.P., 2006. Competition between two planktonic rotifer species at different temperatures: an experimental test. Freshw. Biol., 51, 21872199.CrossRefGoogle Scholar
Stemberger, R.S. and Gilbert, J.J., 1985. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol., 21, 269275.Google Scholar
Stemberger, R.S. and Gilbert, J.J., 1987. Rotifer threshold food concentrations and the size-efficiency hypothesis. Ecology, 68, 181187.CrossRefGoogle Scholar
Sterner, R.W., 1989. The role of grazers in phytoplankton succession, In: Sommer, U. (ed.), Plankton Ecology: Succession in Plankton Communities, Springer, Berlin, 107l70.CrossRefGoogle Scholar
Tilman, D., Mattson, M. and Langer, S., 1981. Competition and nutrient kinetics along a temperature gradient: an experimental test of a mechanistic approach to niche theory. Limnol. Oceanogr., 26, 10201033.CrossRefGoogle Scholar
USEPA, 1985. Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. In: Peltier, WH, Weber, CI (eds.). EPA/600/4-85/013, U.S. Environment Protect Agency, Washington, D.C., 216 p.
Walz, N., 1995. Rotifer populations in plankton communities: energetics and life history strategies. Experientia, 51, 437453.CrossRefGoogle Scholar
Xi, Y.L. and Hagiwara, A., 2007. Competition between the Rotifer Brachionus calyciflorus and the Cladoceran Moina macrocopa in relation to algal food concentration and initial rotifer population density. J. Freshw. Ecol., 22, 421428.CrossRefGoogle Scholar
Xi, Y.L., Huang, X.F. and Wang, B.Q., 2000. The effect of environmental factors on the population dynamics of Brachionus calyciflorus (in Chinese with English abstract). J. Anhui Normal Univ. (Natural Science), 23, 334338.Google Scholar
Xi, Y.L., Ge, Y.L., Chen, F., Wen, X.L. and Dong, L.L., 2005a. Life history characteristics of three strains of Brachionus calyciflorus (Rotifera) at different temperatures. J. Freshw. Ecol., 20, 707713.CrossRefGoogle Scholar
Xi, Y.L., Hagiwara, A. and Sakakura, Y., 2005b. Combined effects of food level and temperature on life table demography of Moina macrocopa Straus (Cladocera). Int. Rev. Hydrobiol., 90, 546554.CrossRefGoogle Scholar
Yang, Y.F. and Huang, X.F., 2000. Advances in ecological studies on zooplankton. J. Lake Sci., 12, 8289.Google Scholar
Yoon, S.M., Lee, J.S., Jung, S.H., Baek, K.H., Chang, C.Y., Lee, S.K. and Kim, W., 2000. Effects of food quality and temperature on life history traits of Moina macrocopa reared in laboratory. Korean J. Biol. Sci., 4, 329336.CrossRefGoogle Scholar
Yoshida, T., Urabe, J. and Elser, J., 2003. Assessment of ‘‘top-down'’ and ‘‘bottom-up'’ forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecol. Res., 18, 639665.CrossRefGoogle Scholar