Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T03:17:03.877Z Has data issue: false hasContentIssue false

Bidirectional exchanges of benthic invertebrates in a large river–floodplain system (Paraná River, Argentina)

Published online by Cambridge University Press:  04 March 2013

Leticia M. Mesa*
Affiliation:
Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina
Mercedes R. Marchese
Affiliation:
Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina
Luciana Montalto
Affiliation:
Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina Facultad de Humanidades y Ciencias, Universidad Nacional del Litoral, Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina
Florencia L. Zilli
Affiliation:
Instituto Nacional de Limnología (CONICET-UNL), Ciudad Universitaria, C.P. 3000, Santa Fe, Argentina
*
*Corresponding author: [email protected]
Get access

Abstract

The flood pulse regime and the hydrological connectivity determine the lateral bidirectional exchanges of water, chemical compounds, and biota between the river and the floodplain habitats. The primary goal of the present research was to analyze the effect of water flow on macroinvertebrates in two water levels in a lateral connectivity gradient, from the main channel through a connection channel to a permanently connected lake. We tested the hypothesis that the water flow from the main channel to the floodplain habitats during high water level causes a decrease in beta diversity between the sites, increasing similarity in the system. To test this hypothesis, we sampled a river–floodplain–lake system of the Middle Paraná River during two water levels, and analyzed the spatial and temporal turnover of species between sites and habitats. Local physical characteristics, such as depth, benthic particulate organic matter, and grain size of bottom sediments influenced assemblage composition. Taxa richness, density, and Shannon diversity differed among habitats within the river–lake system, but did not show significant differences between water levels. Richness, density, and diversity were higher in the lake and the connection channel than in the Paraná River bank. Beta diversity was significantly higher during high water period. During low water period, benthic assemblage composition was homogenized, as reflected by the lower values of species turnover between the sites situated in the main channel–lake corridor during this phase. The lateral bidirectional exchanges among the habitats are essential for maintaining the specific invertebrate diversity of large river corridors.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoros, C. and Bornette, G., 2002. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshwater Biol., 47, 761776.CrossRefGoogle Scholar
Amoros, C., Roux, A.L., Reygrobellet, J.L., Bravard, J.P. and Pautou, G., 1987. A method for applied ecological studies of fluvial hydrosystems. Regul. Rivers, 1, 1736.CrossRefGoogle Scholar
APHA 1992. Standard Methods for the Examination of Water and Wastewater (18th edn,), American Public Health Association, Washington, DC, USA.
Arscott, D.B., Tockner, K. and Ward, J.V., 2005. Lateral organization of aquatic invertebrates along the corridor of a braided floodplain river. J. N. Am. Benthol. Soc., 24, 934954.CrossRefGoogle Scholar
Behrend, R.D.L., Fernandes, S.E.P., Fujita, D.S.A. and Takeda, A.M., 2009. Eight years of monitoring aquatic Oligochaeta from the Baía and Ivinhema Rivers. Braz. J. Biol., 69, 559571.CrossRefGoogle ScholarPubMed
Bogatov, V., Sirotsky, S. and Yuriev, D., 1995. The ecosystem of the Amur river. In: Cushing, C.E., Cummins, K.W. and Minshall, G.W. (eds.), River and Stream Ecosystems, Elsevier, New York, USA, 601613.Google Scholar
Brinkhurst, R.O. and Marchese, M. 1992. Guía para la identificación de Oligoquetos acuáticos continentales de Sud y Centroamérica. Asociación de Ciencias Naturales del Litoral Colección Climax No. 6, Segunda Edición, Asociación de Ciencias Naturales del Litoral, Santa Fe, Argentina, 207 p.Google Scholar
Bunn, S.E. and Arthington, A.H., 2002. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manage., 30, 492507.CrossRefGoogle ScholarPubMed
Domínguez, E. and Fernández, H.R. 2009. Macroinvertebrados bentónicos Sudamericanos, Fundación Miguel Lillo, Tucumán, Argentina, 654 p.Google Scholar
Drago, E.C., 1990. Hydrological and geomorphological characteristics of flood-plain ponds in the middle Paraná River. Acta Limnol. Bras., 3, 907930.Google Scholar
Drago, E.C., 2007. The physical dynamics of the river–lake floodplain system. In: Iriondo, H., Paggi, J.C. and Parma, M.J. (eds.), The Middle Paraná River Limnology of a Subtropical Wetland, Springer-Verlag, Berlin,  Heidelberg, New York, USA, 82122.Google Scholar
Dudgeon, D., 1995. The ecology of rivers and streams in tropical Asia. In: Cushing, C.E., Cummins, K.W. and Minshall, G.W. (eds.), River and Stream Ecosystems, Elsevier, New York, USA, 615657.Google Scholar
Ezcurra de Drago, I., Marchese, M. and Wantzen, K.M., 2004. Benthos of a large neotropical river: spatial patterns and species assemblages in the Lower Paraguay and its floodplains. Arch. Hydrobiol., 160, 347374.CrossRefGoogle Scholar
Ezcurra de Drago, I., Marchese, M. and Montalto, L., 2007. Benthic invertebrates. In: Iriondo, H., Paggi, J.C. and Parma, M.J. (eds.), The Middle Paraná River Limnology of a Subtropical Wetland, Springer-Verlag, Berlin, Heidelberg, New York, 251275.CrossRefGoogle Scholar
Feld, C.K. and Hering, D., 2007. Community structure or function: effects of environmental stress on benthic macroinvertebrates at different spatial scales. Freshwater Biol. 52, 13801399.CrossRefGoogle Scholar
Forbes, A.E. and Chase, J.M., 2002. The role of habitat connectivity and landscape geometry in experimental zooplankton metacommunities. Oikos, 96, 433440.CrossRefGoogle Scholar
Gallardo, B., García, M., Cabezas, A., González, E., González, M., Ciancarelli, C. and Comín, F.A., 2008. Macroinvertebrate patterns along environmental gradients and hydrological connectivity within a regulated river-floodplain. Aquat. Sci., 70, 248258.CrossRefGoogle Scholar
Garcia, X.F. and Laville, H., 2001. Importance of floodplain waters for the conservation of chironomid (Diptera) biodiversity in a 6th order section of the Garonne river (France). Ann. Limnol., 37, 3547.CrossRefGoogle Scholar
Hieber, M., Robinson, C.T., Uehlinger, U. and Ward, J.V., 2005. A comparison of macroinvertebrate assemblages among different types of alpine streams. Freshwater Biol., 50, 20872100.CrossRefGoogle Scholar
InfoStat. Software estadístico. 2010. Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Argentina.
Junk, W.J., 1999. The flood pulse concept of large rivers: learning from tropics. Arch. Hydrobiol. Suppl., 115, 261280.Google Scholar
Junk, W.J., Bayley, P.B. and Sparks, R.E., 1989. The flood pulse concept in river-floodplain systems. Special Publ. Can. J. Fish. Aquat. Sci., 106, 110127.Google Scholar
Koleff, P., Gaston, K.J. and Lennon, J.J., 2003. Measuring beta diversity for presence–absence data. J. Anim. Ecol., s72, 367382.CrossRefGoogle Scholar
Krebs, C.J. 1989. Ecological Methodology, Harper Collins Publishers, New York.Google Scholar
Legendre, P. and Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271280.CrossRefGoogle ScholarPubMed
Legendre, P. and Legendre, L. 1998. Numerical Ecology (Second English edition,), Elsevier Science BV, Amsterdam, The Netherlands.Google Scholar
Lopretto, E.C. and Tell, G., 1995. Ecosistemas de aguas continentales. Ediciones Sur, La Plata, Argentina, 1401 p.Google Scholar
Marchese, M. and Ezcurra de Drago, I.E., 1992. Benthos of the lotic environments in the middle Paraná River system: transverse zonation. Hydrobiologia, 237, 113.CrossRefGoogle Scholar
Marchese, M. and Ezcurra de Drago, I., 2006. Bentos como indicador de condiciones tróficas del sistema del río Paraná Medio. In: Tundisi, J., Matsumura Tundisi, T. and Sidagis Galli, C. (eds.), Eutrofização na América do Sul: Causas, Consequências e Tecnologias de Gerenciamento e Controle, San Paulo, Brazil, 297316.Google Scholar
Marchese, M., Ezcurra de Drago, I. and Drago, E., 2002. Benthic macroinvertebrates and physical habitat relationships in the Paraná River flood-plain system. In: McClain, M.E. (ed.), The Ecohydrology of South American Rivers and Wetlands, Special Publication No. 6, IAHS, 111130.Google Scholar
Marchese, M., Wantzen, K.M. and Ezcurra de Drago, I., 2005. Benthic invertebrate assemblages and species diversity patterns of the Upper Paraguay. Riv. Res. Appl., 21, 131144.CrossRefGoogle Scholar
Mormul, R.P., Thomaz, S.M., Takeda, A.M. and Behrend, R.D., 2011. Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica, 18.Google Scholar
Neiff, J.J., 2001. Diversity in some tropical wetland systems of South America. In: Gopal, B., Junk, W.J. and Davis, J.A. (eds.), Biodiversity in Wetlands: Assessment, Function and Conservation, Backhuys Publishers, Leiden, 157186.Google Scholar
Oksanen, J., Kindt, R., Legendre, P. and O'Hara, R.B., 2006. Vegan: Community Ecology Package version 1.17-4, http://cran.r-project.org/web/packages/vegan/index.html
Paoli, C. and Schreider, M. 2000. El río Paraná en su tramo medio. Tomo I, Universidad Nacional del Litoral, Santa Fe, Argentina, 307 p.Google Scholar
Poff, N.L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. N. Am. Benthol. Soc., 16, 391409.CrossRefGoogle Scholar
Ramonell, C.G., Amsler, M.L. and Toniolo, H., 2000. Geomorfología del cauce principal. In: Paoli, C. and Schreider, M. (eds.), El río Paraná en su tramo medio, Tomo I, Centro de Publicaciones, Secretaría de Extensión UNL, Santa Fe, Argentina, 175232.Google Scholar
Reese, E.G. and Batzer, D.P., 2007. Do invertebrate communities in floodplains change predictably along a rivers length? Freshwater Biol., 52, 226239.CrossRefGoogle Scholar
Takeda, A.M. and Fujita, D.S., 2004. Benthic invertebrates. In: Thomaz, S.M., Agostinho, A.A. and Hanh, N.S. (eds.), The Upper Parana River and its Floodplain: Physical Aspect, Ecology and Conservation, Backhuys Publishers, Leiden, The Netherlands, 191208.Google Scholar
Takeda, A.M., Callisto, M. and Barbosa, F., 2000. Zoobenthos survey of the Pantanal, Mato Grosso do Sul, Brasil. In: Willink, P.W., Chernoff, B., Alonso, L.E., Montambault, J.R. and Lourival, R. (eds.), A Biological Assessment of the Aquatic Ecosystems of the Pantanal, Mato Grosso do Sul, Brasil. RAP Bulletin of Biological Assessment 18. Conservation International, 168174.Google Scholar
Takeda, A.M., Stevaux, J.C. and Fujita, D.S., 2001. Effect of hydraulics, bed load grain size and water factor on habitat and abundance of Narapa bonettoi Righi and Varela, 1983 of the Upper Paraná River, Brazil. Hydrobiologia, 463, 241248.CrossRefGoogle Scholar
Thomaz, S.M., Bini, L.M. and Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 1, 113.CrossRefGoogle Scholar
Thorp, J.H., Thoms, M.C. and DeLong, M.D., 2006. The riverine ecosystem synthesis: biocomplexity in river networks across space and time. Riv. Res. Appl., 22, 123147.CrossRefGoogle Scholar
Tockner, K., Schiemer, F. and Ward, J.V., 1998. Conservation by restoration: the management concept for a riverfloodplain system on the Danube River in Austria. Aquat. Conserv., 8, 7186.3.0.CO;2-D>CrossRefGoogle Scholar
Tockner, K., Malard, F. and Ward, J.V., 2000. An extension of the flood pulse concept. Hydrol. Process., 14, 28612863.3.0.CO;2-F>CrossRefGoogle Scholar
Tockner, K., Pusch, M., Gessner, J., and Wolter, C., 2011. Domesticated ecosystems and novel communities: challenges for the management of large rivers. Ecohydrol. Hydrobiol., 11, 167174.CrossRefGoogle Scholar
Trivinho, Strixino S. 2011. Larvas de Chironomidae. Guía de identificação, Dpto. De Hidrobiologia, Lab. De Entomologia Aquática, UFSCar, São Carlos, Brazil. 371 p.Google Scholar
Wantzen, K.M. and Junk, W.J., 2000. The importance of stream-wetland-systems for biodiversity: a tropicalperspective. In: Gopal, B., Junk, W.J. and Davis, J.A. (eds.), Biodiversity in Wetlands: Assessment, Function and Conservation, Backhuys Publishers, Leiden, 1134.Google Scholar
Ward, J.V. and Stanford, J.A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Reg. Riv., 11, 10519.CrossRefGoogle Scholar
Ward, J.V. and Tockner, K., 2001. Biodiversity: towards a unifying theme for river ecology. Freshwater Biol., 46, 80719.CrossRefGoogle Scholar
Ward, J.V., Tockner, K. and Schiemer, F., 1999. Biodiversity of floodplain river ecosystem. Ecotones and connectivity. Reg. Riv. Res. Manag., 15, 125139.3.0.CO;2-E>CrossRefGoogle Scholar
Wentworth, C., 1932. A scale of grade and class terms for clastic sediments. J. Geol., 30, 377392.CrossRefGoogle Scholar
Whittaker, R.H., 1973. Evolution and measurement of species diversity. Taxon, 21, 213251.CrossRefGoogle Scholar
Zilli, F.L. and Marchese, M.R., 2011. Patterns in macroinvertebrate assemblages at different spatial scales. Implications of hydrological connectivity in a large floodplain river. Hydrobiologia, 663, 245257.CrossRefGoogle Scholar
Zilli, F.L. and Montalto, L., 2011. Benthic invertebrates in the middle Paraná River floodplain (Argentina). In: Álvarez, M. (ed.), Floodplains: Physical Geography, Ecology and Societal Interactions, Nova Science Publishers Inc., Hauppauge, NY, 99126.Google Scholar
Zilli, F.L., Montalto, L. and Marchese, M.R., 2008. Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina). Limnologica, 38, 159171.CrossRefGoogle Scholar