Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T03:50:39.807Z Has data issue: false hasContentIssue false

Potential habitats versus functional habitats in a lowland braided river (Córdoba, Argentina)

Published online by Cambridge University Press:  20 June 2009

Cristina M. Gualdoni*
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Maricel F. Boccolini
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Ana M. Oberto
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Romina E. Principe
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Graciela B. Raffaini
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Maria del Carmen Corigliano
Affiliation:
Universidad Nacional de Río Cuarto, Departamento de Ciencias Naturales, X5804BYA Río Cuarto, Córdoba, Argentina
Get access

Abstract

The benthic community of a braided reach of a lowland river was studied with the aim to identify functional habitats through the assessment of potential habitats. Functional habitats were defined considering physical and biological characteristics. Three reaches of the Chocancharava River (Córdoba, Argentina) were selected and six potential habitats were sampled during high and low water periods. Hydraulic and environmental variables were also registered in each sampling occasion. Taxonomic composition, macroinvertebrate abundance, richness, diversity and evenness were estimated for each identified functional habitat. TWINSPAN analysis was applied separately for two data sets (high water and low water period). This analysis showed that samples of the low water period were mainly grouped in relation to three habitats units: vegetated habitats, unvegetated habitats and habitats related to bars. These three habitats were considered functional habitats. The whole biological and environmental data sets were ordinated by Canonical Correspondence Analysis (CCA) showing a significant relationship between benthic assemblages and environmental variables. This analysis grouped samples in relation to the functional habitats identified by TWINSPAN and indicated that the most influential environmental variables explaining the ordination were: current velocity, depth, substrate size and cover percent of rooted emergent macrophytes. Faunal composition determined by CCA for each functional habitat was in agreement with the results obtained by the Relative Preference Index (RPI). Factorial ANOVAs showed that abundance, taxonomic richness, diversity and evenness were different among the functional habitats and that the community attributes were influenced by the effect of the hydrological period and habitat. As the functional habitat approach provides useful tools in management and river rehabilitation the use of this methodology may allow to develop more appropriate restoration strategies to be applied in altered lowland reaches.

Type
Research Article
Copyright
© EDP Sciences, 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amoros, C., Roux, A.L., Reygrobellet, J.L., Bravard, J.P. and Pautou, G., 1987. A method for applied ecological studies of fluvial hydrosystems. Regul. Riv. Res. Manage. , 1, 1736. CrossRef
Armitage, P.D. and Pardo, I., 1995. Impact assessment of regulation at the reach level using macroinvertebrate information from mesohabitats. Regul. Riv. Res. Manage. , 10, 147158. CrossRef
Baptist M.J., 2001. Review on biogeomorphology in rivers: processes and scales, CFR report 3, Delft University of Technology, Delft.
Baptista, D.F., Buss, D.F., Dorvillé, L.F.M. and Nessimian, J.L., 2001. Diversity and habitat preference of aquatic insects along the longitudinal gradient of the Macaé River basin, Rio de Janeiro, Brazil. Rev. Brasil. Biol. , 61, 249258. CrossRef
Boccolini, M.F., Oberto, A.M. and Corigliano, M.C., 2005. Calidad ambiental en un río urbano de llanura. Biol. Acuática , 22, 5969.
Brooks, A.J., Haeusler, T., Reinfelds, I. and Williams, S., 2005. Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwat. Biol. , 50, 331344. CrossRef
Brunke, M., Hoffmann, A. and Pusch, M., 2001. Use of mesohabitat-specific relationships between flow velocity and river discharge to assess invertebrate minimum flow requirements. Aquatic Conserv. Mar. Freshw. Ecosyst. , 17, 667676.
Buffagni, A., Crosa, G.A., Harper, D.M. and Kemp, J.L., 2000. Using macroinvertebrate species assemblages to identify river channel habitat units: an application of the functional habitats concept to a large, unpolluted Italian river (River Ticino, northern Italy). Hydrobiologia , 435, 213225. CrossRef
Corigliano, M.C., Gualdoni, C.M. and Oberto, A.M., 1987. Deriva de macroinvertebrados en un tramo anastomosado de un río de llanura. Rev. UNRC , 7, 8998.
Crosa, G. and Buffagni, A., 1996. L'habitat idraulico quale elemento per la gestione degli ambienti fluviali. S. It. E. Atti. , 17, 581583.
Davies, N.M., Norris, R.H. and Thoms, M., 2000. Prediction and assessment of local stream habitat features using large-scale catchment characteristics. Freshwat. Biol. , 45, 343369. CrossRef
Degiovanni S.B., Villegas S.M. and Doffo N., 1995. Propuesta de ordenamiento territorial en el tramo urbano del río Cuarto sobre la base del análisis del riesgo de erosión de márgenes. In: Blarasin M., Degiovanni S., Cabrera A. and Villegas M. (eds.), Problemática Geoambiental y Desarrollo Sustentable, Universidad Nacional de Río Cuarto, Río Cuarto, 447–467.
Fernández H.R. and Domínguez E. (eds.), 2001. Guía para la determinación de los artrópodos bentónicos sudamericanos, Universidad Nacional de Tucumán, Facultad de Ciencias Naturales e Instituto M. Lillo, Tucumán, 282 p.
Frissell, C.A., Liss, W.J., Warren, C.E. and Hurley, M.S., 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environ. Manage. , 10, 199214. CrossRef
Gauch H.G., 1982. Multivariate analysis in community ecology, Cambridge, England, Cambridge University Press, 298 p.
Gjerlov, C., Hildrew, A.G. and Jones, J.I., 2003. Mobility of stream invertebrates in relation to disturbance and refugia: a test of habitat templet theory. J. N. Am. Benthol. Soc. , 22, 207223.
Gordon N.D., McMahon T.A. and Finlayson B.L., 1992. Stream hydrology. An introduction for ecologist, Wiley and Sons, New York, 526 p.
Halwas, K.L. and Church, M., 2005. Benthic assemblage variation among channel units in high-gradient streams on Vancouver Island, British Columbia. J. N. Am. Benthol. Soc. , 24, 478494. CrossRef
Harper D. and Everard M., 1998. Why should the habitat-level approach underpin holistic river survey and management? Aquatic Conserv. Mar. Freshw. Ecosyst., 8, 395–413.
Harper D.M., Smith C.D. and Barham P.J., 1992. Habitat as the building blocks for river conservation assessment. In: Boon P.J., Calow P. and Petts G.E. (eds.), River Conservation and Management, Wiley and Sons, Chichester, 311–319.
Harper D.M., Smith C., Barham P. and Howell R., 1995. The ecological basis for the management of the natural river environment. In: Harper D.M. and Ferguson A.J. (eds.), The ecological basis for river management, John Wiley and Sons, Chichester, 219–238.
Hawkins, C.P., 1984. Substrate associations and longitudinal distributions in species of Ephemerellidae (Ephemeroptera: Insecta) from western Oregon. Freshwat. Invert. Biol. , 3, 181188. CrossRef
Hawkins, C.P., Kershner, J.L, Bisson, P.A., Bryant, M.D., Decker, L.M., Gregory, S.V., McCulloch, D.A., Overton, C.K., Reeves, G.H., Steedman, R.J. and Young, M.K., 1993. A hierarchical approach to classifying stream habitat features. Fisheries , 18, 312. 2.0.CO;2>CrossRef
Hill M.O., 1979. TWINSPAN. A Fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes, Cornell University, Ithaca, New York.
Hiromi, T., Nakano, S. and Tokeshi, M., 2003. Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. Freshwat. Biol. , 48, 718728.
Hynes H.B.N., 1970. The ecology of running waters, University of Toronto Press, Toronto, 555 p.
Kemp, J.L., Harper, D.M. and Crosa, G.A., 1999. Use of ‘functional habitats’ to link ecology with morphology and hydrology in river rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. , 9, 159178. 3.0.CO;2-M>CrossRef
Kemp, J.L., Harper, D.M. and Crosa, G.A., 2000. The habitat-scale ecohydraulics of rivers. Ecol. Eng. , 16, 1729. CrossRef
Lopretto E.C. and Tell G., 1995. Ecosistemas de aguas continentales, Metodologías para su estudio, Ediciones Sur, La Plata, 1401 p.
Malmquist, H.L., Antonsson, T., Gudbergsson, G., Skülason, S. and Snorrason, S.S., 2000. Biodiversity of macroinvertebrates on rocky substrate in the surf zone of iceland lakes. Verh. Internat. Verein. Limnol. , 27, 121127.
Pardo, I. and Armitage, P.D., 1997. Species assemblages as descriptors of mesohabitats. Hydrobiologia , 344, 111128. CrossRef
Pedersen M.L., 2003. Physical structure in lowland streams and effects of disturbance, Ph.D. Thesis, National Environmental Research Institute, Silkeborg, Denmark, 108 p., http://www.dmu.dk/1_Viden/2_Publikationer/3_Ovrige/default.asp.
Principe R.E., Raffaini G.B., Gualdoni C.M., Oberto A.M. and Corigliano M.C., 2007. Do hydraulic units define macroinvertebrate assemblages in mountain streams of central Argentina? Limnologica, 37, 323–336.
Ramírez, A., Paaby, P., Pringle, C.M. and Agüero, G., 1998. Effect of habitat type on benthic macroinvertebrates in two lowland tropical streams, Costa Rica. Rev. Biol. Trop. , 46, 201213.
Reich, P. and Downes, B.J., 2003. The distribution of aquatic invertebrate egg masses. Freshwat. Biol. , 48, 14971513. CrossRef
Robinson, C.T., Tockner, K. and Ward, J.V., 2002. The fauna of dynamic riverine landscapes. Freshwat. Biol. , 47, 661677. CrossRef
Sanches Melo, A. and Froehlich, C.G., 2001. Macroinvertebrates in neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. J. N. Am. Benthol. Soc. , 20, 116. CrossRef
Statzner, B., Gore, J.A. and Resh, V.H., 1988. Hydraulic stream ecology: observed patterns and potential applications. J. N. Am. Benthol. Soc. , 7, 307360. CrossRef
Ter Braak C.J.F. and Šmilauer P., 1998. CANOCO Reference Manual and User's Guide to Canoco for Windows: Software for Canonical Community Ordination (version 4), Microcomputer Power, Ithaca, New York, 352 p.
Thomaz, S.M, Bini, L.M. and Bozelli, R.L., 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia , 579, 113. CrossRef
Tickner, D., Armitage, P.D., Bickerton, M.A. and Hall, K.A., 2000. Assessing stream quality using information on mesohabitat distribution and character. Aquat. Conserv. Mar. Freshw. Ecosyst. , 10, 170196. 3.0.CO;2-U>CrossRef
Tockner K., Paetzold A., Karaus U., Claret C. and Zettel J., 2006. Ecology of braided rivers. In: Sambroock Smith G.H., Best J.L., Bristow C.S. and Petts G. (eds.), Braided rivers, IAS Special Publication, Blackwell, Oxford.
Townsend, C.R. and Hildrew, A.G., 1994. Species traits in relation to a habitat templet for river systems. Freshwat. Biol. , 31, 265275. CrossRef
Townsend, C.R., Hildrew, A.G. and Schofield, K., 1987. Persistence of stream communities in relation to environmental variability. J. Anim. Ecol. , 56, 597613. CrossRef
Townsend, C.R., Arbuckle, C.J., Crowl, T.A. and Scarsbrook, M.R., 1997. The relationship between land use and physicochemistry, food resources and macroinvertebrate communities in tributaries of the Taieri River, New Zealand: a hierarchically scaled approach. Freshwat. Biol. , 37, 177191. CrossRef
Vadas, R.L. and Orth, D.J., 1998. Use of physical variables to discriminate visually determined mesohabitat types in North American streams. Rivers , 6, 143159.
Velásquez, S.M. and Miserendino, M.L., 2003. Habitat type and macroinvertebrate assemblages in low order Patagonian streams. Arch. Hydrobiol. , 158, 461483. CrossRef
Ward, J.V., 1989. The four-dimensional nature of lotic ecosystems. J. N. Am. Benthol. Soc. , 8, 28. CrossRef
Ward J.V., 1992. Aquatic Insect Ecology, Wiley and Sons, New York, 438 p.