Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T17:43:37.861Z Has data issue: false hasContentIssue false

Evaluation of a new sampling method for assessing Cladocera richness (Crustacea, Branchiopoda) in macrophyte-rich wetlands

Published online by Cambridge University Press:  28 March 2014

Francisco Diogo Rocha Sousa*
Affiliation:
Núcleo de Estudos em Biodiversidade Aquática, Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Avenida Roraima 1000, Camobi, 97105-900 Santa Maria, RS, Brazil Laboratório de Biodiversidade Aquática, Universidade Católica de Brasília, Grupo de Estudos de Ecossistemas Aquáticos, QS 7, Lote 1, bloco M, salas 204, CEP 71966-700 Taguatinga Sul, DF, Brazil
Lourdes Maria Abdu Elmoor-Loureiro
Affiliation:
Laboratório de Biodiversidade Aquática, Universidade Católica de Brasília, Grupo de Estudos de Ecossistemas Aquáticos, QS 7, Lote 1, bloco M, salas 204, CEP 71966-700 Taguatinga Sul, DF, Brazil
Luciana Mendonça-Galvão
Affiliation:
Laboratório de Biodiversidade Aquática, Universidade Católica de Brasília, Grupo de Estudos de Ecossistemas Aquáticos, QS 7, Lote 1, bloco M, salas 204, CEP 71966-700 Taguatinga Sul, DF, Brazil
José Roberto Pujol-Luz
Affiliation:
Departamento de Zoologia, Instituto de Ciência Biológicas, Universidade de Brasília, CEP 70910-900 Brasília, DF, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

The wetlands found in the Brazilian Cerrado are poorly studied environments regarding ecological aspects. Assessing the diversity of aquatic invertebrates in wetlands is a challenging task, since there are no standard sampling methods that minimize the spatial effects caused by macrophytes. The aim of this study was to evaluate the efficiency of a new sampling method for assessing Cladocera richness in macrophyte-rich wetlands of Brazilian Cerrado. In six wetlands, one transect was established which corresponded to a gradient of depth or change in aquatic vegetation. Samples containing cladocerans were collected using plankton net dragged among aquatic vegetation in the dry and rainy seasons. The species accumulation curves using non-parametric estimators and the overestimation of richness were used to determine the sampling efficiency. The species accumulation curves showed different asymptotic trends regarding the season and wetland studied. Especially in the rainy season, an asymptotic trend was not observed in two of the wetlands studied, which may reflect the influence of seasonality on Cladocera assemblage. Nevertheless, the overestimation of species richness showed that the method of sampling was able to find more than 60% of the estimated species richness, regardless of season or wetland studied. These results indicate that the method employed for sampling Cladocera in the Cerrado wetlands can be considered adequate.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostinho, A.A., Thomaz, S.M. and Gomes, L.C., 2005. Conservation of the biodiversity of Brazil's inlands waters. Conserv. Biol., 19, 646652.CrossRefGoogle Scholar
Alho, C.J.R., 2011. Biodiversity of the Pantanal: its magnitude, human occupation, environmental threats and challenges for conservation. Braz. J. Biol., 71, 229232.CrossRefGoogle ScholarPubMed
Campbell, J.M., Clark, W.J. and Kosinski, R., 1982. A technique for examination microspatial distribution of Cladocera associated with shallow water macrophytes. Hydrobiologia, 97, 225232.CrossRefGoogle Scholar
Cardoso, M.S., Henriques, S.S., Gaspar, C., Crespo, L.C., Carvalho, R., Schimdt, J.B., Sousa, P. and Szus, T., 2009. Species richness and composition assessment of spiders in a Mediterranean scrubland. J. Insect Conserv., 13, 4555.CrossRefGoogle Scholar
Caterino, M.S., 2007. Species and complementarity of beetle faunas in a mediterranean-type biodiversity hotspot. Biodivers. Conserv., 16, 39934007.CrossRefGoogle Scholar
Colwell, R.K., 2009. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples. Version 8.2 User's Guide and application published at: http://viceroy.eeb.uconn.edu/EstimateS.
Colwell, R.K. and Coddington, J.A., 1994. Estimate terrestrial biodiversity through extrapolation. Phil. Trans. R. Soc. B, 345, 101118.CrossRefGoogle Scholar
Cruz, I.C.S., Kikuchi, R.K.P. and Leão, Z.M.A.N., 2008. Use of the video transect method for characterizing the Itacolomis reefs, eastern Brazil. Braz. J. Oceanogr., 56, 271280.CrossRefGoogle Scholar
Elmoor-Loureiro, L.M.A., 1997. Manual de identificação de cladóceros límnicos do Brasil, Universa, Brasília, 156 p.Google Scholar
Elmoor-Loureiro, L.M.A., 2007. Phytophilous cladocerans (Crustacea, Anomopoda and Ctenopoda) from Paranã River valley, Goiás, Brazil. Zoologia, 24, 344352.Google Scholar
Ferreira, H.L.M., Souza, M.B.G. and Lopez, C.M., 2008. Evaluation of sampling methods for periphytic fauna in macrophytes at the Espinhaço mountain range biosphere reserve, Minas Gerais State, Brazil. Acta Sci. Biol. Sci., 30, 253259.CrossRefGoogle Scholar
Forró, L., Korovichinsky, N.M., Kotov, A.A. and Petrusek, A., 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia, 595, 177184.CrossRefGoogle Scholar
Glowacki, L., 2011. Accuracy of species richness estimator applied to fish in small and large temperate low land rivers. Biodivers. Conserv., 20, 13651384.CrossRefGoogle Scholar
Gonzáles-Oreja, J.A., Garbisu, C., Mendarte, S., Ibarra, A. and Albizu, I., 2010. Assessing the performance of non-parametric estimators of species in meadows. Biodivers. Conserv., 19, 14171436.CrossRefGoogle Scholar
Gotelli, N.J. and Colwell, R.K., 2001. Quantifying biodiversity: procedures and pitfalls in the measuring and comparison of species richness. Ecol. Lett., 4, 379391.CrossRefGoogle Scholar
Gotelli, N.J. and Colwell, R.K., 2010. Estimating species richness. In: Magurran, A.E. and McGill, B.J. (eds.), Biological Diversity: Frontiers in Measurement and Assessment, Oxford, UK, 3954.Google Scholar
Hammer, Ø., Harper, D.A.T. and Ryan, P.D., 2001. Past: paleontological statistics software package for education and data analysis. Palaeontol. Electron., 4, 19.Google Scholar
Hansen, J.P., Wikstrom, S.A., Axemar, H. and Kautsky, L., 2011. Distribution differences and active habitat choices of invertebrates between macrophytes of different morphological complexity. Aquat. Ecol., 45, 1122.CrossRefGoogle Scholar
Heck, K.L.J., van Belle, G. and Simberloff, D., 1975. Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology, 56, 14591461.CrossRefGoogle Scholar
Hollwedel, W., Kotov, A.A. and Brandorff, G.O., 2003. Cladocera (Crustacea: Branchiopoda) from the Pantanal (Brazil). Arthropod. Sel., 12, 6793.Google Scholar
Junk, W., Cunha, C.N., Wantzen, K.M., Peterman, P., Strussmann, C., Marques, M.I. and Adis, J., 2006. Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat. Sci., 68, 278309.CrossRefGoogle Scholar
Kaeser, J.M. and Kirkman, L.K., 2009. Estimating total plant species richness in depressional wetlands in the long leaf pine ecosystem. Wetlands, 29, 866874.CrossRefGoogle Scholar
Klink, C.A. and Machado, R.B., 2005. A conservação do Cerrado brasileiro. Megadiversidade, 1, 148155.Google Scholar
Kotov, A.A. and Štifter, P., 2006. Cladocera: Family Ilyocryptidae (Branchiopoda: Cladocera: Anomopoda), Backhuys Publisher/Kenobi Productions, Leiden/Ghent, 172 p.Google Scholar
Kotov, A.A., Garfias-Espejo, T. and Elías-Gutiérrez, M., 2004. Separation of two Neotropical species: Macrothrix superaculeata (Smirnov, 1982) versus M. elegans Sars, 1901 (Macrothricidae, Anomopoda, Cladocera). Hydrobiologia, 517, 6188.CrossRefGoogle Scholar
Kruk, C., Rodríguez-Galego, L., Meerhoff, M., Quintans, F., Lacerot, G., Mazeo, N., Scasso, F., Paggi, J.C., Peeters, E.T.H.M. and Marten, S., 2009. Determinants of biodiversity in subtropical shallow lakes (Atlantic coast, Uruguay). Freshw. Biol., 54, 26282641.CrossRefGoogle Scholar
Ledru, M.P., 2002. Late quaternary history and evolution of Cerrados as revealed by palynological records. In: Oliveira, P.S. and Marquis, R.J. (eds.), The Cerrados of Brazil, New York, NY, USA, 3350.Google Scholar
Loutte, G., Meester, L.D. and Declerck, S., 2008. Assembly of zooplankton communities in newly created ponds. Freshw. Biol., 53, 23092320.Google Scholar
Lucena-Moya, P. and Duggan, I.C., 2011. Macrophyte architecture affects the abundance and diversity of littoral microfauna. Aquat. Ecol., 45, 279287.CrossRefGoogle Scholar
Magurran, A.E. and Queiroz, H., 2010. Evaluating tropical biodiversity: do we need a more refined approach? Biotropica, 42, 537539.CrossRefGoogle Scholar
Maia-Barbosa, P., Peixoto, R.S. and Guimarães, A.S., 2008. Zooplankton in littoral waters of a tropical lake: a revisited biodiversity. Braz. J. Biol., 68, 10691078.CrossRefGoogle ScholarPubMed
Melo, A.S., 2004. A critique of the use of Jackknife and related non-parametric techniques to estimate species richness. Commun. Ecol., 5, 149157.CrossRefGoogle Scholar
Melo, A.S. and Froehlich, C.G., 2001. Evaluation of methods for estimating macroinvertebrate species richness using individual stones in tropical streams. Freshw. Biol., 46, 711721.CrossRefGoogle Scholar
Merlo, M.J., Parietti, M. and Etchegoin, J.A., 2010. Evaluation of species richness estimators in studies of diversity involving two larval digenean communities parasitizing snail hosts. Parasitol. Res., 107, 10931102.CrossRefGoogle ScholarPubMed
Middleton, B., 2002. Succession and herbivory in monsoonal wetlands. Wetl. Ecol. Manage., 6, 189202.CrossRefGoogle Scholar
Moore, P.D., 2007. Wetlands, Revised edn.,, Infobase Publishing, USA, 255 p.Google Scholar
Mormul, R.P., Thomaz, S.M., Takeda, A.M. and Behrend, R.D., 2011. Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica, 43, 738745.CrossRefGoogle Scholar
Muirhead, J.R., Ejmont-Karabin, J. and MacIsaac, H.J., 2006. Quantifying rotifer species richness in temperate lakes. Freshw. Biol., 51, 16961709.CrossRefGoogle Scholar
Odland, A. and del Moral, R., 2002. Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen lake, Norway. Plant Ecol., 162, 185198.CrossRefGoogle Scholar
Padial, A.A., Thomaz, S.M. and Agostinho, A.A., 2009. Effects of structural heterogeneity provided by the floating macrophyte Eichhornia azurea on the predation efficiency and habitat use of the small Neotropical fish Moenkhausia sanctaefilomenae. Hydrobiologia, 624, 161170.CrossRefGoogle Scholar
Petersen, F.T., Meier, R. and Larsen, M.N., 2003. Testing richness species estimation methods using museum label data on the Danish Asilidae. Biodivers. Conserv., 12, 687701.CrossRefGoogle Scholar
Ramsar information paper no. 1. What are wetlands? Accessed online 26 May 2011, available via DIALOG: www.ramsar.org/about/info2007-01-e.pdf.
Reid, J.W., 1984. Semiterrestrial meiofauna inhabiting a wet campo in central Brazil, with special reference to the Copepoda (Crustacea). Hydrobiologia, 118, 95111.CrossRefGoogle Scholar
Reid, J.W., 1987. The cyclopoid copepods of a wet campo marsh in central Brazil. Hydrobiologia, 153, 121138.CrossRefGoogle Scholar
Reid, J.W., 1993. The Harpacticoid and cyclopoid copepod fauna in the cerrado region of central Brazil. 1. Species composition, habitats, and zoogeography. Acta Limnol. Bras., 6, 5668.Google Scholar
Reid, J.W., 1994. Murunducaris juneae, new genus, new species (Copepoda: Harpacticoida: Parastenocarididae) from a wet campo in central Brazil. J. Crustacean Biol., 14, 771781.CrossRefGoogle Scholar
Roberto, M.C., Santana, F.C. and Thomaz, S.M., 2009. Limnology in the Upper Paraná River floodplain: large-scale spatial and temporal patterns, and the influence of reservoirs. Braz. J. Biol., 69, 717725.CrossRefGoogle ScholarPubMed
Sakuma, M., Hanazato, T., Nakazato, R. and Haga, H., 2002. Method for quantitative sampling of epiphytic microinvertebrates in lake vegetation. Lymnology, 13, 115119.CrossRefGoogle Scholar
Serafim-Júnior, M., Lansac-Tôah, F.A., Paggi, J.C., Velho, L.F.M. and Robertson, B., 2003. Cladocera fauna composition in a river-lagoon system of the Upper Paraná River floodplain, with a new record for Brazil. Braz. J. Biol., 63, 349356.CrossRefGoogle Scholar
Sinev, A.Y. and Elmoor-Loureiro, L.M.A., 2010. Three new species of chydorid cladocerans of subfamily Aloninae (Branchipoda: Anomopoda: Chydoridae) from Brazil. Zootaxa, 2390, 125.Google Scholar
Smirnov, N.N., 1992. The Macrothricidae of the World, SPB Academic Publishing, Amsterdam, 143 p.Google Scholar
Smirnov, N.N., 1996. Cladocera: The Chydorinae and Sayciinae (Chydoridae) of the World, SPB Academic Publishing, Amsterdam, 197 p.Google Scholar
Sousa, F.D.R., 2012. Diversidade da fauna de Cladocera (Crustacea, Branchiopoda) associada à macrófitas em áreas úmidas naturais do Cerrado do Brasil Central. M.Sc. Thesis, University of Brasília.Google Scholar
Sousa, F.D.R. and Elmoor-Loureiro, L.M.A., 2008. Phytopilous cladocerans (Crustacea, Branchiopoda) of the Parque Nacional das Emas, State of Goiás. Biota Neotrop., 8, 159166.CrossRefGoogle Scholar
Thomaz, S.M. and Cunha, E.R., 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages’ composition and biodiversity. Acta Limnol. Bras., 22, 218236.CrossRefGoogle Scholar
Thomaz, S.M., Dibble, E.D., Evangelista, L.R., Higuti, J. and Bini, L.M., 2008. Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshw. Biol., 53, 358367.Google Scholar
Turki, S. and Turki, B., 2010. Copepoda and Branchiopoda from Tunisian temporary waters. Int. J. Biodivers. Conserv., 2, 8697.Google Scholar
Van Damme, K., Kotov, A.A. and Dumont, H.J., 2010. A checklist of names in Alona Baird 1843 (Crustacea: Cladocera: Chydoridae) and their current status: an analysis of the taxonomy of a lump genus. Zootaxa, 2330, 163.Google Scholar
Van Damme, K., Sinev, A.Y. and Dumont, H.J., 2011. Separation of Anthalona gen.n. from Alona Baird, 1843 (Branchiopoda: Cladocera: Anomopoda): morphology and evolution of scraping stenothermic alonines. Zootaxa, 2875, 164.Google Scholar
van der Valk, A.G., 2006. The Biology of Freshwater Wetlands, Oxford University Press, New York, 173 p.Google Scholar
Vieira, L.C.G., Bini, L.M., Velho, L.F.M. and Mazão, G.R., 2007. Influence of spatial complexity on the density and diversity of periphytic rotifers, microcrustaceans and testate amoebae. Fund. Appl. Limnol., 170/1, 7785.CrossRefGoogle Scholar
Williams, V.L., Witkowski, E.T.F. and Balkwill, K., 2007. The use of incidence-based species richness estimators, species accumulation curves and similarity measures to appraise ethnobotanical inventories from South Africa. Biodivers. Conserv., 16, 24952513.CrossRefGoogle Scholar
Zagmajster, M., Culver, D.C., Cristiman, M.C. and Sket, B., 2010. Evaluating the sampling bias in pattern of subterranean species richness: combining approaches. Biodivers. Conserv., 19, 30353048.CrossRefGoogle Scholar