Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T01:05:43.215Z Has data issue: false hasContentIssue false

Diversity and assemblage patterns of microorganisms structured by the groundwater chemistry gradient in spring fens

Published online by Cambridge University Press:  02 September 2013

Vendula Křoupalová*
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
Věra Opravilová
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
Jindřiška Bojková
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
Michal Horsák
Affiliation:
Department of Botany and Zoology, Faculty of Science, Masaryk University, CZ-61137 Brno, Czech Republic
*
*Corresponding author: [email protected]
Get access

Abstract

We examined the associations of microorganism assemblages with a complete mineral richness gradient spanning from extremely mineral-rich tufa-forming calcareous fens to mineral-poor acidic Sphagnum-fens. We also compared the distribution of two dominant taxa, testate amoebae and monogonont rotifers, among the sites differing in water chemistry and among three microhabitats sampled at each site differing in substrate and moisture conditions. Microorganism assemblages primarily changed in relation to the mineral richness gradient; moisture was the second most important factor structuring microorganism assemblages among microhabitats (i.e., wet bryophytes, submerged bryophytes and waterlogged bottom sediments). Densities of testate amoebae taxa and individuals were the highest in rich Sphagnum-fens, indicating a unimodal pattern along the mineral richness gradient. Numbers of testate amoebae taxa decreased notably in wet bryophytes, especially in poor Sphagnum-fens. This pattern might result from a strong effect of Sphagnum acidification due to minimal or no dilution of the acidic environment by mineral-rich groundwater. As a consequence, acid tolerant and relatively xerophilous taxa chiefly dominated in wet bryophytes of poor Sphagnum-fens, while poor Sphagnum-fen bottom sediments could provide a refuge for less tolerant and hydrophilous species. In contrast to testate amoebae, monogonont rotifers preferred bryophytes in all sites, with the number of monogonont taxa distinctly increasing from calcareous fens to poor Sphagnum-fens. In poor Sphagnum-fens, monogononts were the most abundant in wet bryophytes, probably due to reduced food competition and/or predaceous pressure resulting from the limited occurrence of other groups of microorganisms by virtue of the hostile acidic conditions in wet Sphagnum carpets.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balogh, J. and Mahunka, S., 1983. Primitive Oribatids of the Palaearctic Region, Akadémia Kiadó, Budapest, 372 p.Google Scholar
Bartoš, E., 1959. Vířníci – Rotatoria. Fauna ČSR, sv. 15, NČSAV, Praha, 969 p.Google Scholar
Bateman, L. and Davis, C., 1980. The Rotifera of hummock-hollow formation in a poor (mesotrophic) fen in Newfoundland. Int. Revue ges. Hydrobiol., 65, 127153.CrossRefGoogle Scholar
Beasley, C.W., 1995. In: Ramazzotti, G. and Maucci, W. (ed.). The phylum Tardigrada (3rd edn), English translation. McMurry University, Abilene, Texas, USA, 1014 p.Google Scholar
Bērziņš, B. and Pejler, B., 1987. Rotifer occurrence in relation to pH. Hydrobiologia, 147, 107116.CrossRefGoogle Scholar
Bielańska-Grajner, I., Mieczan, T. and Cudak, A., 2011. Co-occurence of ciliates and rotifers in peat mosses. Polish J. Environ. Stud., 20, 533540.Google Scholar
Błedzki, L.A. and Ellison, A.M., 2003. Diversity of rotifers from northeastern U.S.A. bogs with new species records for North America and New England. Hydrobiologia, 497, 5362.CrossRefGoogle Scholar
Bobrov, A.A., Charman, D.J. and Warner, B.G., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in Western Russia with special attention to niche separation in closely related taxa. Protist, 150, 125136.CrossRefGoogle ScholarPubMed
Bojková, J., Schenková, J., Horsák, M. and Hájek, M., 2011. Species richness and composition patterns of clitellate (Annelida) assemblages in the treeless spring fens: the effect of water chemistry and substrate. Hydrobiologia, 667, 159171.CrossRefGoogle Scholar
Botosaneanu, L. (ed.), 1998. Studies in crenobiology. The Biology of Springs and Springbrooks, Backhuys Publishers, Leiden, 261 p.Google Scholar
Charman, D.J., 1997. Modelling hydrological relationships of testate amoebae (Protozoa: Rhizopoda) on New Zealand peatlands. J. R. Soc. New. Zeal., 27, 465483.CrossRefGoogle Scholar
Charman, D.J., Blundell, A. and ACCROTELM Members, 2007. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J. Quaternary Sci., 22, 209221.CrossRefGoogle Scholar
Clymo, R.S., 1963. Ion exchange in Sphagnum and its relation to bog ecology. Ann. Bot., 27, 309324.CrossRefGoogle Scholar
Clymo, R.S., 1984. Sphagnum-dominated peat bog—a naturally acid ecosystem. Phil. Trans. R. Soc. Lond. B, 305, 487499.CrossRefGoogle Scholar
Couteaux, M.M., 1975. Écologie des thécamoebiens de quelques humus bruts forestiers. Rev. Ecol. Biol. Sol., 12, 421447.Google Scholar
Couteaux, M.M., 1976. Dynamisme de l'équilibre des thécamoebiens dans quelques sols climaciques. Mem. Mus. Nat. Hist. Nat., Ser. A. Zool., 96, 1183.Google Scholar
Dufrêne, M. and Legendre, P., 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345366.Google Scholar
Duggan, I.C., Green, J.D. and Shiel, R.J., 2001. Distribution of rotifers in North Island, New Zealand, and their potential use as bioindicators of lake trophic state. Hydrobiologia, 446/447, 155164.CrossRefGoogle Scholar
Foissner, W., Berger, H., Blatterer, H. and Kohlmann, F., 1995a. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems–Band IV: Gymnostomatea, Loxodes, Suctoria. Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtsch., 1/95, 1540.Google Scholar
Foissner, W., Berger, H., Blatterer, H. and Kohlmann, F., 1995b. Taxonomische und ökologische Revision der Ciliaten des Saprobiensystems–Band II: Peritrichia, Heterotrichida, Odontostomatida. Informationsberichte des Bayer. Landesamtes für Wasserwirtsch., 5/92, 1502.Google Scholar
Francez, A.-J. and Dévaux, J., 1985. Répartition des rotifères dans deux lacs-tourbières du Massif Central (France). Hydrobiologia, 128, 265276.CrossRefGoogle Scholar
Fránková, M., Bojková, J., Poulíčková, A. and Hájek, M., 2009. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness. Fottea, 9, 355368.CrossRefGoogle Scholar
Gerecke, R., Stoch, F., Meisch, C. and Schrankel, I., 2005. Die Fauna der Quellen und des hyporheischen Interstitials in Luxemburg. Ferrantia, 41, 140 p.Google Scholar
Gilbert, D. and Mitchell, E., 2006. Microbial diversity in Sphagnum peatlands. In: Martini, I.P., Martinez, Cortizas A. and Chestworth, W (eds.), Peatlands: Evolution and Records of Environmental and Climatic Changes, Amsterdam, Elsevier, 289320.Google Scholar
Gilbert, D., Mitchell, E.A.D., Amblard, C., Bourdier, G. and Francez, A.J., 2003. Population dynamics and food preferences of the testate amoeba Nebela tincta major-bohemica-collaris complex (Protozoa) in a Sphagnum peatland. Acta Protozool., 42, 99104.Google Scholar
Gyliarov, M.S. (ed.), 1975. A key to the soil-inhabiting mites. Sarcoptiformes, Nauka, Moskva, 491 p.Google Scholar
Hájek, M. and Hekera, P., 2004. Can seasonal variation in fen water chemistry influence the reliability of vegetation-environmental analyses? Preslia, 76, 114.Google Scholar
Hájek, M., Hekera, P. and Hájková, P., 2002. Spring fen vegetation and water chemistry in the Western Carpathian flysch zone. Folia Geobot., 37, 205224.CrossRefGoogle Scholar
Hájek, M., Horsák, M., Hájková, P. and Dítě, D., 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant. Ecol., 8, 97114.CrossRefGoogle Scholar
Hájek, M., Horsák, M., Tichý, L., Hájková, P., Dítě, D. and Jamrichová, E., 2011. Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: a null model approach . J. Biogeogr., 38, 742755.CrossRefGoogle Scholar
Hájková, P. and Hájek, M., 2004. Bryophyte and vascular plant responses to base-richness and water level gradients in Western Carpathian Sphagnum-rich mires. Folia Geobot., 39, 335351.CrossRefGoogle Scholar
Hájková, P., Bojková, J., Fránková, M., Opravilová, V., Hájek, M., Kintrová, K. and Horsák, M., 2011. Disentangling the effects of water chemistry and substratum structure on moss-dwelling unicellular and multicellular micro-organisms in spring-fens. J. Limnol., 70, 5464.CrossRefGoogle Scholar
Halsey, L.A., Vitt, D.H. and Gignac, L.D., 2000. Sphagnum dominated peatlands in North America since the last glacial maximum: their occurrence and extent. Bryologist, 103, 334352.CrossRefGoogle Scholar
Heal, O.W., 1964. Observations on the seasonal and spatial distribution of Testacea (Protozoa, Rhizopoda) in Sphagnum. J. Anim. Ecol., 33, 395412.CrossRefGoogle Scholar
Hindák, F., 1978. Sladkovodné Riasy, SPN, Bratislava, 728 p.Google Scholar
Horsák, M. and Hájek, M., 2003. Composition and species richness of mollusc communities in relation to vegetation and water chemistry in the Western Carpathian spring fens: the poor-rich gradient. J. Mollus. Stud., 69, 349357.CrossRefGoogle Scholar
Horsák, M., Hájek, M., Spitale, D., Hájková, P., Dítě, D. and Nekola, J.C., 2012. The age of island-like habitats impacts habitat specialist species richness. Ecology 93, 11061114.CrossRefGoogle ScholarPubMed
Jassey, V.E.J., Chiapusio, G., Mitchell, E.A.D., Binet, P., Toussaint, M.L. and Gilbert, D., 2010. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow fen/bog gradient. Microb. Ecol., 61, 374385.CrossRefGoogle ScholarPubMed
Jassey, V.E.J., Shimano, S., Dupuy, C., Toussaint, M.-L. and Gilbert, D., 2012. Characterizing the feeding habits of the testate amoebae Hyalosphenia papilio and Nebela tincta along a narrow “fen-bog” gradient using digestive vacuole content and 13C and 15N isotopic analyses. Protist, 163, 451464.CrossRefGoogle ScholarPubMed
Karlin, E.F. and Bliss, L.C., 1984. Variation in substrate chemistry along microtopographical and water-chemistry gradients in peatlands. Can. J. Bot., 62, 142153.CrossRefGoogle Scholar
Lamentowicz, Ł., Lamentowicz, M. and Gabka, M., 2008. Testate amoebae ecology and a local transfer function from a peatland in western Poland. Wetlands, 28, 164175.CrossRefGoogle Scholar
Malmer, N., 1986. Vegetational gradients in relation to environmental conditions in northwestern European mires. Can. J. Bot., 64, 375383.CrossRefGoogle Scholar
Mattheeussen, R., Ledeganck, P., Vincke, S., van de Vijver, B., Nijs, I. and Beyens, L., 2005. Habitat selection of aquatic testate amoebae communities on Qeqertarsuaq (Disko Island), West Greenland. Acta Protozool., 44, 253263.Google Scholar
Mazei, Y.A. and Tsyganov, A.N., 2006. Presnovodnyje rakovinnyje amebby, Tovarishtshestvo nautchnyh izdanij KMK, Moscow, 304 p.Google Scholar
McCune, B. and Mefford, M.J., 2011. PC-ORD. Multivariate analysis of ecological data. Version 6. MjM Software, Gleneden Beach, Oregon, USA.Google Scholar
Mieczan, T., 2006. Species diversity of Protozoa (Rhizopoda, Ciliata) on mosses of Sphagnum in restoration areas of the Poleski national park. Acta Agrophys., 7, 453459.Google Scholar
Mieczan, T., 2007. Epiphytic protozoa (testate amoebae and ciliates) associated with Sphagnum in peatbogs: relationship to chemical parameters. Pol. J. Ecol., 55, 7990.Google Scholar
Mieczan, T., 2009. Ecology of testate amoebae (Protists) in Sphagnum peatlands of eastern Poland: vertical micro-distribution and species assemblages in relation to environmental parameters. Ann. Limnol. - Int. J. Lim., 45, 4149.CrossRefGoogle Scholar
Mitchell, E.A.D., Buttler, A.J., Warner, B.G. and Gobat, J.M., 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience, 6, 565576.CrossRefGoogle Scholar
Mitchell, E.A.D., Buttler, A., Grosvernier, P., Rydin, H., Albinsson, C., Greenup, A.L., Heijmans, M.M.P.D., Hoosbeek, M.R. and Saarinen, T., 2000. Relationships among testate amoebae (Protozoa), vegetation and water chemistry in five Sphagnum-dominated peatlands in Europe. New Phytol., 145, 95106.CrossRefGoogle Scholar
Mitchell, E.A.D., Bragazza, L. and Gerdol, R., 2004. Testate amoebae (Protista) communities in Hylocomium splendens (Hedw.) B.S.G. (Bryophyta): relationships with altitude, and moss elemental chemistry. Protist, 155, 423436.CrossRefGoogle ScholarPubMed
Nogrady, T., Wallace, R.L. and Snell, T.W., 1993. Rotifera. Volume 1: Biology, ecology and systematics. In: Dumont, H. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, SPB Academic Publishing, The Hague, 142 p.Google Scholar
Opravilová, V. and Hájek, M., 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozool., 45, 191204.Google Scholar
Payne, R., Gauci, V. and Charman, D.J., 2010. The impact of simulated sulfate deposition on peatland testate amoebae. Microb. Ecol., 59, 7683.CrossRefGoogle ScholarPubMed
Payne, R.J., 2010. Testate amoeba response to acid deposition in a Scottish peatland. Aquat. Ecol., 44, 373385.CrossRefGoogle Scholar
Payne, R.J., 2011. Can testate amoeba-based palaeohydrology be extended to fens? J. Quaternary Sci., 26, 1527.CrossRefGoogle Scholar
Pejler, B. and Bērziņš, B., 1994. On the ecology of Lecane (Rotifera). Hydrobiologia, 273, 7780.CrossRefGoogle Scholar
Poulíčková, A., Hájek, M. and Rybníček, K. (eds.), 2005. Ecology and Palaeoecology of Spring Fens in the Western Part of the Carpathians, Palacký University, Olomouc, 209 p.Google Scholar
Rapant, S., Vrana, K. and Bodiš, D., 1996. Geochemical atlas of Slovakia. In: Vrana, K. (ed.), Part I Groundwater, GSSR, Bratislava, 127 p.Google Scholar
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna.PubMed
Schnitchen, C., Charman, D.J., Magyari, E., Braun, M., Grigorszky, I., Tóthmérész, B., Molnár, M. and Szántó, Zs., 2006. Reconstructing hydrological variability from testate amoebae analysis in Carpathian peatlands. J. Paleolimnol., 36, 117.CrossRefGoogle Scholar
Schwank, P., 1990. Gastrotricha. In: Schwank, P. and Bartsch, I. (eds.), Gastrotricha und Nemertini, Süsswasserfauna von Mitteleuropa, 3/1+2, Gustav Fischer, Stuttgart, 252 p.Google Scholar
Segers, H., 1995. Rotifera 2: The Lecanidae (Monogononta). Guides to the identification of the microinvertebrates of the continental waters of the World. In: Dumont, H.J.F. and Nogrady, T. (eds.), SPB Academic Publishing, The Hague, Netherlands, 226 p.Google Scholar
Segers, H., 1996. The biogeography of littoral Lecane Rotifera. Hydrobiologia, 323, 169197.CrossRefGoogle Scholar
Smith, H.G. and Headland, R.K., 1983. The population ecology of soil testate rhizopods on the sub-Antarctic island of South Georgia. Rev. Ecol. Biol. Sol., 20, 269284.Google Scholar
Sullivan, M.E. and Booth, R.K., 2011. The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands. Microb. Ecol., 62, 8093.CrossRefGoogle ScholarPubMed
Timm, T., 2009. A guide to the freshwater Oligochaeta and Polychaeta of northern and central Europe. Lauterbornia, 66, 1235.Google Scholar
van Breemen, N., 1995. How Sphagnum bogs down other plants. Trends Ecol. Evol., 10, 270275.CrossRefGoogle ScholarPubMed
Voigt, M., 1957. Rotatoria. Die Rädertiere Mitteleuropas. I. Textband: 1–508, II. Tafelband: 115 Tab, Borntraeger, Berlin.Google Scholar
Warner, B.G., 1987. Abundance and diversity of testate amoebae (Rhizopoda, Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Arch. Protistenkd., 133, 173189.CrossRefGoogle Scholar
Warner, B.G. and Charman, D.J., 1994. Holocene changes on a peatland in northwestern Ontario interpreted from testate amoebae (Protozoa) analysis. Boreas, 23, 270279.CrossRefGoogle Scholar
Weigmann, G., 2006. Die Tierwelt Deutschlands, Teil 76: Hornmilben (Oribatida), Goecke and Evers, Keltern, 520 p.Google Scholar
Williams, D.D. and Danks, H.V., 1991. Athropods of springs, with particular reference to Canada. Mem. Entomol. Soc. Can., 155, 217 p.Google Scholar