Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:07:35.742Z Has data issue: false hasContentIssue false

Different effects of planktonic invertebrate predators and fish on the plankton community in experimental mesocosms

Published online by Cambridge University Press:  14 February 2014

Michal Šorf*
Affiliation:
Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
Zdeněk Brandl
Affiliation:
Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic
Petr Znachor
Affiliation:
Faculty of Science, University of South Bohemia, Branišovská 31, CZ-370 05, České Budějovice, Czech Republic Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-370 05, České Budějovice, Czech Republic
Mojmír Vašek
Affiliation:
Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-370 05, České Budějovice, Czech Republic
*
*Corresponding author: [email protected]
Get access

Abstract

The impact of fish and cyclopoid copepod predation on zooplankton communities was evaluated using large-volume mesocosms (depth 9.5 m; volume 13 m3) in the Římov reservoir (Czech Republic). Two yearling roach and perch individuals introduced into mesocosms represented the fish treatment, which was compared to cyclopoid copepods (initial abundance of 2 ind.L−1) and a control with no initial addition of predators. Our results clearly support the hypothesis that planktivorous fish feeding leads to the suppression of large-bodied cladocerans. In the presence of fish, the cladoceran community changed from a dominance of large-bodied Daphnia spp. at the beginning to dominance by the smaller Bosmina longirostris at the end of the experiment. Chlorophyll-a concentration and rotifer abundances increased in the absence of daphnids. In the absence of fish, the presence of large-bodied cladocerans resulted in decreasing chlorophyll-a concentration. Although no significant differences were observed between cyclopoid abundances in treatments stocked with cyclopoids and the control, the proportion of large cladocerans clearly showed the effect of the manipulation. The similar trends in both of these treatments did not confirm the importance of cyclopoid predation in our experiment. The overall strong effect of fish over cyclopoid predation suggests the main role of fish predation in the forming of zooplankton communities and in turn impacting phytoplankton biomass in mesocosms.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beklioglu, M., 1999. A review on the control of eutrophication in deep and shallow lakes. Turk. J. Zool., 23, 327336.Google Scholar
Benndorf, J., Wissel, B., Sell, A.F., Hornig, U., Ritter, P. and Böing, W., 2000. Food web manipulation by extreme enhancement of piscivory: an invertebrate predator compensates for the effects of planktivorous fish on a plankton community. Limnologica, 30, 235245.CrossRefGoogle Scholar
Berg, S., Jeppesen, E. and Søndergaard, M., 1997. Pike (Esox lucius L.) stocking as a biomanipulation tool 1. Effects on the fish population in Lake Lyng, Denmark. Hydrobiologia, 342–343, 311318.CrossRefGoogle Scholar
Bertolo, A., Lacroix, G., Lescher-Moutoue, F. and Cardinal-Legrand, C., 2000. Plankton dynamics in planktivore- and piscivore- dominated mesocosms. Arch. Hydrobiol., 147, 327349.CrossRefGoogle Scholar
Beutler, M., Wiltshire, K.H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U.P. and Dau, H., 2002. Afluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth. Res., 72, 3953.CrossRefGoogle Scholar
Blumenshine, S.C. and Hambright, H.D., 2003. Top-down control in pelagic systems: a role for invertebrate predation. Hydrobiologia, 491, 347356.CrossRefGoogle Scholar
Brabrand, A., Faafeng, B. and Nilssen, J.P.M., 1986. Juvenile roach and invertebrate predators: delaying the recovery phase of eutrophic lakes by suppression of efficient filter-feeders. J. Fish Biol., 29, 99106.CrossRefGoogle Scholar
Brandl, Z., 1998. Life strategy and feeding relations of Cyclops vicinus in two reservoirs. Int. Rev. Hydrobiol., 83, 381388.Google Scholar
Brandl, Z., 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475489.CrossRefGoogle Scholar
Brett, M.T. and Goldman, C.R., 1996. A meta-analysis of the freshwater trophic cascade. Proc. Natl. Acad. Sci. USA, 93, 77237726.CrossRefGoogle ScholarPubMed
Brooks, J.L. and Dodson, S.I., 1965. Predation, body size, and composition of plankton. Science, 150, 2835.CrossRefGoogle ScholarPubMed
Carpenter, S.R. and Kitchell, J.F., 1992. Trophic cascade and biomanipulation: interface of research and management – a reply to the comment by DeMelo et al. Limnol. Oceanogr., 37, 208213.CrossRefGoogle Scholar
Carpenter, S.R., Kitchell, J.F. and Hodgson, J.R., 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 634639.CrossRefGoogle Scholar
Chang, K.H. and Hanazato, T., 2005. Impact of selective predation by Mesocyclops pehpeiensis on a zooplankton community: experimental analysis using mesocosms. Ecol. Res., 20, 726732.CrossRefGoogle Scholar
Devetter, M. and Seda, J., 2006. Regulation of rotifer community by predation of Cyclops vicinus (Copepoda) in the Římov Reservoir in spring. Int. Rev. Hydrobiol., 91, 101112.CrossRefGoogle Scholar
Draštík, V., Kubečka, J., Tušer, M., Čech, M., Frouzová, J., Jarolím, O. and Prchalová, M., 2008. The effect of hydropower on fish stocks: comparison between cascade and non-cascade reservoirs. Hydrobiologia, 609, 2536.CrossRefGoogle Scholar
Dussart, B.H. and Defaye, D., 2001. Copepoda. Introduction to the Copepoda, Backhuys Publishers, Leiden, 344 p.Google Scholar
Edmonson, W.T., 1971. Methods for processing samples and developing data. In: Edmonson, W.T. (ed.), A Manual on Methods for the Assessment of Secondary Productivity in Fresh Waters, IPB Handbook, Vol. 17, Blackwell Scientific Publications, Oxford, 127137.Google Scholar
Gliwicz, Z.M., Hillbricht-Ilkowska, A. and Wegleńska, T., 1978. Contribution of fish and invertebrate predation to the elimination of zooplankton biomass in two Polish lakes. Verh. Internat. Verein. Limnol., 20, 10071011.Google Scholar
Ha, J.-Y., Saneyoshi, M., Park, H.-D., Toda, H., Kitano, S., Homma, T., Shiina, T., Moriyama, Y., Chang, K.-H. and Hanazato, T., 2013. Lake restoration by biomanipulation using piscivore and Daphnia stocking; results of the biomanipulation in Japan. Limnology, 14, 1930.CrossRefGoogle Scholar
Hansson, L.-A. and Tranvik, L.J., 1996. Quantification of invertebrate predation and herbivory in food chains of low complexity. Oecologia, 108, 542551.CrossRefGoogle ScholarPubMed
Hansson, L.-A., Annadotter, H., Bergman, E., Hamrin, S.F., Jeppesen, E., Kairesalo, T., Luokkanen, E., Nilsson, P.-Åk., Søndergaard, M. and Strand, J., 1998. Biomanipulation as an application of food-chain theory: constraints, synthesis, and recommendations for temperate lakes. Ecosystems, 1, 558574.CrossRefGoogle Scholar
Hansson, L.-A., Gyllström, M., Stahl-Delbanco, A. and Svensson, M., 2004. Responses to fish predation and nutrients by plankton at different levels of taxonomic resolution. Freshwater Biol., 49, 15381550.CrossRefGoogle Scholar
Hessen, D.O., 1985. Selective zooplankton predation by pre-adult roach (Rutilus rutilus): the size-selective hypothesis versus the visibility-selective hypothesis. Hydrobiologia, 124, 7379.CrossRefGoogle Scholar
Horppila, J. and Liljendahl-Nurminen, A., 2005. Clay-turbid interactions may not cascade – a reminder for lake managers. Restor. Ecol., 13, 242246.CrossRefGoogle Scholar
Hrbáček, J., 1962. Species composition and the amount of the zooplankton in relation to the fish stock. Rozpravy Československé akademie věd. Matematické a přírodní vědy, 72, 1116.Google Scholar
Hrbáček, J. and Hrbáčková-Esslová, M., 1960. Fish stock as a protective agent in the occurrence of slow-developing dwarf species and strains of the genus Daphnia. Int. Rev. Gesamten Hydrobiol., 45, 355358.CrossRefGoogle Scholar
Hrbáček, J., Dvořáková, M., Kořínek, V. and Procházková, L., 1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association. Verh. Internat. Verein. Limnol., 14, 192195.Google Scholar
Hrbáčková, M., 1974. The size of primipae and neonates of Daphnia hyalina Leydig (Crustacea, Cladocera) under natural and enriched food conditions. Věstník Československé společnosti zoologické, 38, 98105.Google Scholar
Hülsmann, S. and Mehner, T., 1997. Predation by underyearling perch (Perca fluviatilis) on a Daphnia galeata population in a short-term enclosure experiment. Freshwater Biol., 38, 209219.CrossRefGoogle Scholar
Jeffries, M., 1988. Individual vulnerability to predation: the effect of alternative prey types. Freshwater Biol., 19, 4956.CrossRefGoogle Scholar
Kolar, C.S. and Wahl, D.H., 1998. Daphnid morphology deters fish predators. Oecologia, 116, 556564.CrossRefGoogle ScholarPubMed
Kubečka, J., 1989. Development of the ichtyofauna of the Římov Reservoir and its management. Arch. Hydrobiol. Beih. Ergebn. Limnol., 33, 611613.Google Scholar
Kubečka, J., Sed'a, J. and Matěna, J., 1998. Fish-zooplankton interactions during spring in a deep reservoir. Int. Rev. Hydrobiol., 83, 431442.Google Scholar
Kurmayer, R. and Wanzenböck, J., 1996. Top-down effects of underyearling fish on a phytoplankton community. Freshwater Biol., 36, 599609.CrossRefGoogle Scholar
Macháček, J. and Sed'a, J., 1998. Spatio-temporal changes of morphological and life-history parameters in Daphnia galeata in a canyon-shaped dam lake. Int. Rev. Hydrobiol., 83, 171178.Google Scholar
Manca, M., Vijverberg, J., Polishchuk, L.V. and Voronov, D.A., 2008. Daphnia body size and population dynamics under predation by invertebrate and fish predators in Lago Maggiore: an approach based on contribution analysis. J. Limnol., 67, 1521.CrossRefGoogle Scholar
Mehner, T. and Thiel, R., 1999. A review of predation impact by 0+ fish on zooplankton in fresh and brackish waters of the temperate northern hemisphere. Environ. Biol. Fish., 56, 169181.CrossRefGoogle Scholar
Nicolle, A., Hansson, L.-A., Brodersen, J., Nilsson, P.A. and Brönmark, C., 2011. Interactions between predation and resources shape zooplankton population dynamics. PLoS ONE, 6, e16534.CrossRefGoogle ScholarPubMed
Persson, L. and Greenberg, L.A., 1990. Optimal foraging and habitat shift in perch (Perca fluviatilis) in a resource gradient. Ecology, 71, 16991713.CrossRefGoogle Scholar
Persson, L., Diehl, S., Johansson, L., Andersson, G. and Hamrin, S.F., 1991. Shifts in fish communities along the productivity gradient of temperate lakes – patterns and the importance of size-structured interactions. J. Fish Biol., 38, 281293.CrossRefGoogle Scholar
Peterka, J. and Matěna, J., 2009. Differences in feeding selectivity and efficiency between young-of-the-year European perch (Perca fluviatilis) and roach (Rutilus rutilus) – field observations and laboratory experiments on the importance of prey movement apparency vs. evasiveness. Biologia, 64, 786794.CrossRefGoogle Scholar
Post, J.R. and McQueen, D.J., 1987. The impact of planktivorous fish on the structure of a plankton community. Freshwater Biol., 17, 7989.CrossRefGoogle Scholar
Reynolds, C.S., 2006. The Ecology of Phytoplankton, Cambridge University Press, Cambridge, 535 p.CrossRefGoogle Scholar
Sed'a, M., Kolářová, K., Petrusek, A. and Macháček, J., 2007. Daphnia galeata in the deep hypolimnion: spatial differentiation of a “typical epilimnetic” species. Hydrobiologia, 594, 4757.CrossRefGoogle Scholar
Ślusarczyk, M., 1997. Impact of fish predation on a small-bodied cladoceran: limitation or stimulation? Hydrobiologia, 342–343, 215221.CrossRefGoogle Scholar
Šorf, M., Brandl, Z., Znachor, P. and Vašek, M., 2013. Floating large-volume mesocosms as a simple, low-cost experimental design suitable for the variety of lakes and reservoirs. Fundam. Appl. Limnol., 183, 4148.CrossRefGoogle Scholar
Straile, D. and Halbich, A., 2000. Life history and multiple antipredator defenses of an invertebrate pelagic predator, Bythotrephes longimanus. Ecology, 81, 150163.CrossRefGoogle Scholar
Straškraba, M., 1964. Preliminary results of a new method for the quantitative sorting of freshwater net plankton into main groups. Limnol. Oceanogr., 9, 268270.CrossRefGoogle Scholar
Vanni, M.J. and Layne, C.D., 1997. Nutrient recycling and herbivory as mechanisms in the “top-down” effect of fish on algae in lakes. Ecology, 78, 2140.Google Scholar
Vašek, M. and Kubečka, J., 2004. In situ diel patterns of zooplankton consumption by subadult/adult roach Rutilus rutilus, bream Abramis brama, and bleak Alburnus alburnus. Folia Zool., 53, 203214.Google Scholar
Vašek, M., Kubečka, J. and Sed'a, J., 2003. Cyprinid predation on zooplankton along the longitudinal profile of a canyon-shaped reservoir. Arch. Hydrobiol., 156, 535550.CrossRefGoogle Scholar
Vašek, M., Kubečka, J., Matěna, J. and Seďa, J., 2006. Distribution and diet of 0+ fish within a canyon-shaped European reservoir in late summer. Int. Rev. Hydrobiol., 91, 178194.CrossRefGoogle Scholar
Wallace, R. L., Snell, T. W., Ricci, C. and Nogrady, T., 2006. Rotifera. Volume 1: Biology, Ecology and Systematics., Backhuys Publishers and Kenobi Publishers.Google Scholar
Werner, E.E. and Hall, D.J., 1974. Optimal foraging and the size selection of prey by the bluegill sunfish (Lepomis macrochirus). Ecology, 55, 10421052.CrossRefGoogle Scholar
Wojtal, A., Frankiewicz, P., Wagner-Lotkowska, I. and Zalewski, M., 2004. The evaluation of the role of pelagic invertebrate versus vertebrate predators on the seasonal dynamics of filtering Cladocera in a shallow, eutrophic reservoir. Hydrobiologia, 515, 123135.CrossRefGoogle Scholar
Wojtal, A., Frankiewicz, P., Andziak, M. and Zalewski, M., 2007. The influence of invertebrate predators on Daphnia spatial distribution and survival in laboratory experiments: support for Daphnia horizontal migration in shallow lakes. Int. Rev. Hydrobiol., 92, 2332.CrossRefGoogle Scholar
Young, S. and Taylor, V.A., 1998. Visually guided chases in Polyphemus pediculus. J. Exp. Biol., 137, 387398.Google Scholar
Znachor, P., Zapomělová, E., Řeháková, K., Nedoma, J. and Šimek, K., 2008. The effect of extreme rainfall on summer succession and vertical distribution of phytoplankton in a lacustrine part of a eutrophic reservoir. Aquat. Sci., 70, 7786.CrossRefGoogle Scholar