Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-30T23:34:51.686Z Has data issue: false hasContentIssue false

Allometric growth of two species of Ephemeroptera from Neotropical mountains streams

Published online by Cambridge University Press:  03 May 2012

Gabriel de Paula Paciencia*
Affiliation:
Laboratório de Biologia Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900 Assis, SP, Brazil PPG em Entomologia, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes, 3900, Monte Alegre, CEP 14040-901 Ribeirão Preto, SP, Brazil
Pitágoras da Conceição Bispo*
Affiliation:
Laboratório de Biologia Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900 Assis, SP, Brazil
Sara Sanches Cortezzi
Affiliation:
Laboratório de Biologia Aquática, Departamento de Ciências Biológicas, Faculdade de Ciências e Letras de Assis, Universidade Estadual Paulista, Av. Dom Antônio, 2100, Parque Universitário, CEP 19806-900 Assis, SP, Brazil
*
*Corresponding author: [email protected]
Get access

Abstract

The present study evaluated the relative growth and allometry of Massartella brieni Lestage and Thraulodes sp. (Leptophlebiidae: Ephemeroptera). The morphometric analysis was based on 23 measurements and was conducted using a multivariate approach. Throughout postembryonic ontogeny, all of the head measurements, including those of the mouthparts, exhibited negative allometric growth. The mesothorax and wing pad exhibited positive allometric growth. The hind legs lengths in M. brieni and the fore and hind legs lengths in Thraulodes sp. exhibited positive allometry. The abdominal length in these two species exhibited positive allometric growth. Positive allometry was also observed along the abdomen width for M. brieni, and isometry was observed for Thraulodes sp. The relative strengthening of the thorax (in preparation for the winged stage) and the relative increase in the abdomen (which may be related to the development of the reproductive structures) during growth indicate that many of the structures that exhibit positive allometric growth are related to the transition from the aquatic to the adult stage of development.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Clifford, H.F., 1970. Analysis of a northen mayfly (Ephemeroptera) population, with special reference to allometry of size. Can. J. Zool., 48, 305316.CrossRefGoogle Scholar
Da-Silva, E.R., Salles, F.F. and Baptista, M.S., 2002. As brânquias do gênero de Leptophlebiidae (Insecta, Ephemeroptera) ocorrentes no Estado do Rio de Janeiro. Biota Neotrop., 2, 14.CrossRefGoogle Scholar
Domínguez, E., Molineri, C., Pescador, M.L., Hubbard, M.D. and Nieto, C., 2006. Ephemeroptera of South America, Pensoft, Sofia-Moscow, 646 p.Google Scholar
Espadaler, X. and Gómez, C., 2001. Formicinae ants comply with the size-grain hypothesis. Funct. Ecol., 15, 136139.CrossRefGoogle Scholar
Fenoglio, S., BO, T. and Malacarne, G., 2007. Allometric growth in Anacroneuria Klapálek 1909 nymphs (Plecoptera: Perlidae). Trop. Zool., 20, 109114.Google Scholar
Gaino, E. and Rebora, M., 2005. Egg envelopes of Baetis rhodani and Cloeon dipterum (Ephemeroptera, Baetidae): a comparative analysis between an oviparous and an ovoviviparous species. Acta Zool., 86, 6369.CrossRefGoogle Scholar
Hammer, O., Harper, D.A.T. and Rian, P.D., 2001. Past: Palaeonthological statistics software package for education and data analysis. Version. 1.37. Available online at: http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Jander, U. and Jander, R., 1994. Numerical allometric growth of the ommatidia, antennal sensilla, and teeth of foretibial combs in the milkweed bug Oncopeltus fasciatus Dallas (Heteroptera: Lygaeidae). Int. J. Insect Morphol. Embryol., 23, 329344.Google Scholar
Jolicouer, P., 1963. The multivariate generalization of the allometry equation. Biometrics, 19, 497499.CrossRefGoogle Scholar
Kaspari, M. and Weiser, M.D., 1999. The size-grain hypothesis and interspecific scaling in ants. Funct. Ecol., 13, 530538.CrossRefGoogle Scholar
Klingenberg, C.P., 1996. Multivariate allometry. In: Marcus, L.F., Corti, M., Loy, A., Naylor, G.J.P. and Slice, D.E. (eds.), Advances in Morphometrics, Plenum Press, New York, 2349.CrossRefGoogle Scholar
Klingenberg, C.P., 1998. Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biol. Rev., 73, 79123.CrossRefGoogle ScholarPubMed
Klingenberg, C.P. and Zimmermann, M., 1992a. Static, ontogenetic, and evolutionary allometry: a multivariate comparison in nine species of waterstriders. Am. Nat., 140, 601620.CrossRefGoogle Scholar
Klingenberg, C.P. and Zimmermann, M., 1992b. Dyar's rule and multivariate allometric growth in nine species of waterstriders (Heteroptera: Gerridae). J. Zool., 227, 453464.CrossRefGoogle Scholar
Legendre, P. and Legendre, L., 1998. Numerical Ecology: Developments in Environmental Modelling, Elsevier, Amsterdam, 853 p.Google Scholar
Manunz, M. and German, R.Z., 1997. Ontogeny and limb bone scaling in two New World marsupials, Monodelphis domestica and Didelphis virginiana. J. Morphol., 231, 117130.3.0.CO;2-B>CrossRefGoogle Scholar
Monteiro, L.R., 1997. Allometric growth and functional integration in the skull of black caiman Melanosuchus niger (Crocodyla: Alligatoridae). A jackknife approach. Rev. Bras. Biol., 57, 3137.Google Scholar
Monteiro, L.R., Cavalcanti, M.J. and Sommer, H.J.S. III, 1997. Comparative ontogenetic shape changes in the skull of Caiman species (Crocodylia, Alligatoridae). J. Morphol., 231, 5362.3.0.CO;2-P>CrossRefGoogle Scholar
Rodrigues, D., Sanfelice, D., Monteiro, L.R. and Moreira, G.R.P., 2005. Ontogenetic trajectories and hind tibia geometric morphometrics of Holymenia clavigera (Herbst) and Anisoscelis foliacea marginella (Dallas) (Hemiptera: Coreidae). Neotrop. Entomol., 34, 769776.CrossRefGoogle Scholar
Schoning, C., Kinuthia, W. and Franks, N.R., 2005. Evolution of allometries in the worker caste of Dorylus army ants. Oikos, 110, 231240.CrossRefGoogle Scholar
Shingleton, A.W., Frankino, W.A., Flatt, T., Nijhout, H.F. and Emlen, D.J., 2007. Size and shape: the developmental regulation of static allometry in insects. BioEssays, 29, 536548.CrossRefGoogle ScholarPubMed
Sthraler, H.N., 1957. Quantitative analysis of watershed geomorphology. Am. Geophys. Union Trans., 33, 913920.CrossRefGoogle Scholar
Teuscher, M., Brandle, M., Traxel, V. and Brandl, R., 2009. Allometry between leg and body length of insects: lack of support for the size-grain hypothesis. Ecol. Entomol., 34, 718724.CrossRefGoogle Scholar