Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-15T13:23:57.537Z Has data issue: false hasContentIssue false

Transport of cations and anions across forestomach epithelia: conclusions from in vitro studies

Published online by Cambridge University Press:  26 February 2010

S. Leonhard-Marek*
Affiliation:
Department of Physiology, School of Veterinary Medicine Hannover, Bischfsholer Damm 15, 30173 Hannover, Germany
F. Stumpff
Affiliation:
Department of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany
H. Martens
Affiliation:
Department of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163 Berlin, Germany
*
Get access

Abstract

Secretion of saliva as well as absorptive and secretory processes across forestomach epithelia ensures an optimal environment for microbial digestion in the forestomachs. Daily salivary secretion of sodium (Na+) exceeds the amount found in plasma by a factor of 2 to 3, while the secretion of bicarbonate (HCO3) is 6 to 8 times higher than the amount of HCO3 in the total extracellular space. This implies a need for efficient absorptive mechanisms across forestomach epithelia to allow for an early recycling. While Na+ is absorbed from all forestomachs via Na+/H+ exchange and a non-selective cation channel that shows increased conductance at low concentrations of Mg2+, Ca2+ or H+ in the luminal microclima and at low intracellular Mg2+, HCO3 is secreted by the rumen for the buffering of ingesta but absorbed by the omasum to prevent liberation of CO2 in the abomasum. Fermentation provides short chain fatty acids and ammonia (NH3) that have to be absorbed both to meet nutrient requirements and maintain ruminal homeostasis of pH and osmolarity. The rumen is an important location for the absorption of essential minerals such as Mg2+ from the diet. Other ions can be absorbed, if delivered in sufficient amounts (Ca2+, Pi, K+, Cl and NH4+). Although the presence of transport mechanisms for these electrolytes has been described earlier, our knowledge about their nature, regulation and crosstalk has increased greatly in the last years. New transport pathways have recently been added to our picture of epithelial transport across rumen and omasum, including an apical non-selective cation conductance, a basolateral anion conductance, an apical H+-ATPase, differently expressed anion exchangers and monocarboxylate transporters.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdoun, K, Wolf, K, Arndt, G, Martens, H 2003. Effect of ammonia on Na+ transport across isolated rumen epithelium of sheep is diet dependent. British Journal of Nutrition 90, 751758.CrossRefGoogle ScholarPubMed
Abdoun, K, Stumpff, F, Wolf, K, Martens, H 2005. Modulation of electroneutral Na transport in sheep rumen epithelium by luminal ammonia. American Journal of Physiology Gastrointestinal and Liver Physiology 289, G508G520.CrossRefGoogle ScholarPubMed
Abdoun, K, Stumpff, F, Martens, H 2006. Ammonia and urea transport across the rumen epithelium: a review. Animal Health Research Reviews 7, 4359.CrossRefGoogle ScholarPubMed
Abdoun, K, Stumpff, F, Rabbani, I, Martens, H 2010. Modulation of urea transport across sheep rumen epithelium in vitro by SCFA and CO2. American Journal of Physiology Gastrointestinal and Liver Physiology 298, G190G202, Epub. 19 November 2009, doi:10.1152/ajpgi.00216.2009.CrossRefGoogle ScholarPubMed
Ali, OHA 2005. In vitro studies of ion transport in sheep omasum: interaction between Na, Cl and short chain fatty acids. Thesis, Free University Berlin, Germany.Google Scholar
Ali, O, Shen, Z, Tietjen, U, Martens, H 2006. Transport of acetate and sodium in sheep omasum: mutual, but asymmetric interactions. Journal of Comparative Physiology B 176, 477487.CrossRefGoogle ScholarPubMed
Allen, MS 1997. Relationship between fermentation acid production in the rumen and the requirement for physically effective fiber. Journal of Dairy Science 80, 14471462.CrossRefGoogle ScholarPubMed
Aronson, PS, Nee, J, Suhm, MA 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature 299, 161163.CrossRefGoogle Scholar
Aschenbach, JR, Bilk, S, Tadesse, G, Stumpff, F, Gäbel, G 2009. Bicarbonate-dependent and bicarbonate-independent mechanisms contribute to nondiffusive uptake of acetate in the ruminal epithelium of sheep. American Journal of Physiology Gastrointestinal and Liver Physiology 296, G1098G1107.CrossRefGoogle ScholarPubMed
Awayda, MS, Bengrine, A, Tobey, NA, Stockand, JD, Orlando, RC 2004. Nonselective cation transport in native esophageal epithelia. American Journal of Physiology Cell Physiology 287, C395C402.CrossRefGoogle ScholarPubMed
Bailey, CB 1961. Saliva secretion and its relation to feeding in cattle. 4. The relationship between the concentrations of sodium, potassium, chloride and inorganic phosphate in mixed saliva and rumen fluid. British Journal of Nutrition 15, 489498.CrossRefGoogle ScholarPubMed
Bailey, CB, Balch, CC 1961. Saliva secretion and its relation to feeding in cattle. 2. The composition and rate of secretion of mixed saliva in the cow during rest. British Journal of Nutrition 15, 383402.CrossRefGoogle ScholarPubMed
Beardsworth, LJ, Beardsworth, PM, Care, AD 1989. The effect of ruminal phosphate concentration on the absorption of calcium, phosphorus and magnesium from the reticulo-rumen of the sheep. British Journal of Nutrition 61, 715723.CrossRefGoogle ScholarPubMed
Beisele, M 2008. Charakterisierung des HCO3 Transportes des isolierten Psalterepithels des Schafes. Thesis, Free University Berlin, Germany.Google Scholar
Bergman, EN 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567590.CrossRefGoogle ScholarPubMed
Bilk, S 2008. Mechanismen der anionischen SCFA-Resorption im Pansen des Schafes. Thesis, University Leipzig, Germany.Google Scholar
Bilk, S, Huhn, K, Honscha, KU, Pfannkuche, H, Gäbel, G 2005. Bicarbonate exporting transporters in the ovine ruminal epithelium. Journal of Comparative Physiology B 175, 365374.CrossRefGoogle ScholarPubMed
Blair-West, JR, Brook, AH 1969. Circulatory changes and renin secretion in sheep in response to feeding. Journal of Physiology 204, 1530.CrossRefGoogle ScholarPubMed
Blair-West, JR, Coghlan, JP, Denton, DA, Goding, JR, Wright, RD 1963. The effect of aldosterone, cortisol, and corticosterone upon the sodium and potassium content of sheep’s parotid saliva. Journal of Clinical Investigation 42, 484496.CrossRefGoogle ScholarPubMed
Bödeker, D, Kemkowski, J 1996. Participation of NH4+ in total ammonia absorption across the rumen epithelium of sheep (Ovis aries). Comparative Biochemistry and Physiology A 114, 305310.CrossRefGoogle ScholarPubMed
Bödeker, D, Lamy, S, Mahler, M, Höller, H 1994. Effects of short-chain fatty acids on electrophysiological properties and permeability characteristics of sheep (Ovis aries) abomasal mucosa. Comparative Biochemistry and Physiology A 107, 7379.CrossRefGoogle Scholar
Bolton, JR, Merritt, AM, Carlson, GM, Donawick, WJ 1976. Normal abomasal electromyography and emptying in sheep and the effects of intraabomasal volatile fatty acid infusion. American Journal of Veterinary Research 37, 13871392.Google Scholar
Bowman, GR, Beauchemin, KA, Shelford, JA 2003. Fibrolytic enzymes and parity effects on feeding behavior, salivation, and ruminal pH of lactating dairy cows. Journal of Dairy Science 86, 565575.CrossRefGoogle ScholarPubMed
Breves, G, Rosenhagen, C, Höller, H 1987. The secretion of inorganic phosphorus in the saliva of P-depleted sheep. Zentralblatt für Veterinärmedizin A 34, 4247.CrossRefGoogle ScholarPubMed
Breves, G, Höller, H, Packheiser, P, Gäbel, G, Martens, H 1988. Flux of inorganic phosphate across the sheep rumen wall in vivo and in vitro. Quarterly Journal of Experimental Physiology 73, 343351.CrossRefGoogle ScholarPubMed
Breves, G, Goff, JP, Schröder, B, Horst, RL 1995. Gastrointestinal calcium and phosphate metabolism in ruminants. In Ruminant physiology: digestion, metabolism, growth and reproduction (ed. W von Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 135151. Enke Verlag, Stuttgart, Germany.Google Scholar
Brinkmann, I 2006. Charakterisierung eines nicht selektiven Kationenkanals in Epithelzellen des Pansens von Schafen – Bedeutung für die Osmoregulation der Pansenflüssigkeit. Thesis, Free University Berlin, Germany.Google Scholar
Care, AD, Brown, RC, Farrar, AR, Pickard, DW 1984. Magnesium absorption from the digestive tract of sheep. Quarterly Journal of Experimental Physiology 69, 577587.CrossRefGoogle ScholarPubMed
Cassida, KA, Stokes, MR 1986. Eating and resting salivation in early lactation dairy cows. Journal of Dairy Science 69, 12821292.CrossRefGoogle ScholarPubMed
Chien, WJ, Stevens, CE 1972. Coupled active transport of Na and Cl across forestomach epithelium. American Journal of Physiology 223, 9971003.CrossRefGoogle ScholarPubMed
Danielli, JF, Hitchcock, MWS, Marshall, RA, Phillipson, AT 1945. The mechanism of absorption from the rumen as exemplified by the behaviour of acetic, propionic, and butyric acids. Journal of Experimental Biology 22, 7584.CrossRefGoogle Scholar
Diernaes, L, Sehested, J, Moller, PD, Skadhauge, E 1994. Sodium and chloride transport across the rumen epithelium of cattle in vitro: effect of short-chain fatty acids and amiloride. Experimental Physiology 79, 755762.CrossRefGoogle ScholarPubMed
Dobson, A 1959. Active transport through the epithelium of the reticulo-rumen sac. Journal of Physiology 146, 235251.CrossRefGoogle ScholarPubMed
Dölle, M 2008. Charakterisierung des Na+-Transportes am isolierten Psalterepithel des Schafes. Thesis, Free University Berlin, Germany.Google Scholar
Donowitz, M, Li, X 2007. Regulatory binding partners and complexes of NHE3. Physiological Reviews 87, 825872.CrossRefGoogle ScholarPubMed
Dua, K, Leonhard, S, Martens, H, Abbas, SK, Care, AD 1994. Effects of parathyroid hormone and parathyroid hormone-related protein on the rates of absorption of magnesium, calcium, sodium, potassium and phosphate ions from the reticulo-rumen of sheep. Experimental Physiology 79, 401408.CrossRefGoogle ScholarPubMed
Edrise, BM, Smith, RH, Hewitt, D 1986. Exchanges of water and certain water-soluble minerals during passage of digesta through the stomach compartments of young ruminating bovines. British Journal of Nutrition 55, 157168.CrossRefGoogle ScholarPubMed
Ekman, J, Sperber, I 1953. The distribution of concentrations of bicarbonate (including carbon dioxide) and cloride in the omasum of cows. Kungliga Lantbrukshögskolans Annaler 19, 227231.Google Scholar
Erdmann, RA 1988. Dietary buffering requirements of the lactating dairy cow: a review. Journal of Dairy Science 71, 32463266.CrossRefGoogle Scholar
Etschmann, B, Heipertz, KS, von der Schulenburg, A, Schweigel, M 2006. A vH+-ATPase is present in cultured sheep ruminal epithelial cells. American Journal of Physiology Gastrointestinal and Liver Physiology 291, G1171G1179.CrossRefGoogle ScholarPubMed
Etschmann, B, Suplie, A, Martens, H 2009. Change of ruminal sodium transport in sheep during dietary adaptation. Archives of Animal Nutrition 63, 2638.CrossRefGoogle ScholarPubMed
Ferreira, HG, Harrison, FA, Keynes, RD 1966a. The potential and short-circuit current across isolated rumen epithelium of the sheep. Journal of Physiology 187, 631644.CrossRefGoogle ScholarPubMed
Ferreira, HG, Harrison, FA, Keynes, RD, Nauss, AH 1966b. Observations on the potential across the rumen of the sheep. Journal of Physiology 187, 615630.CrossRefGoogle ScholarPubMed
Ferreira, HG, Harrison, FA, Keynes, RD, Zurich, L 1972. Ion transport across an isolated preparation of sheep rumen epithelium. Journal of Physiology 222, 7793.CrossRefGoogle ScholarPubMed
Gäbel, G, Aschenbach, JR 2006. Ruminal SCFA absorption: channeling acids without harm. In Ruminant physiology: digestion, metabolism and impact of nutrition on gene expression, immunology and stress (ed. K Sejrsen, T Hvelplund and MO Nielsen), pp. 173198. Wageningen Academic Publishers, Wageningen, the Netherlands.CrossRefGoogle Scholar
Gäbel, G, Martens, H 1986. The effect of ammonia on magnesium metabolism in sheep. Journal of Animal Physiology and Animal Nutrition 55, 278287.CrossRefGoogle Scholar
Gäbel, G, Martens, H 1991. Transport of Na+ and Cl across the forestomach epithelium: Mechanisms and interactions with short-chain fatty acids. In Physiological aspects of digestion and metabolism in ruminants (ed. T Tsuda, Y Sasaki and R Kawashima), pp. 129151. Academic Press, San Diego, CA, USA.CrossRefGoogle Scholar
Gäbel, G, Martens, H, Suendermann, M, Galfi, P 1987. The effect of diet, intraruminal pH and osmolarity on sodium, chloride and magnesium absorption from the temporarily isolated and washed reticulo-rumen of sheep. Quarterly Journal of Experimental Physiology 72, 501511.CrossRefGoogle Scholar
Gäbel, G, Bestmann, M, Martens, H 1991a. Influences of diet, short-chain fatty acids, lactate and chloride on bicarbonate movement across the reticulo-rumen wall of sheep. Zentralblatt für Veterinärmedizin A 38, 523529.CrossRefGoogle ScholarPubMed
Gäbel, G, Vogler, S, Martens, H 1991b. Short-chain fatty acids and CO2 as regulators of Na+ and Cl absorption in isolated sheep rumen mucosa. Journal of Comparative Physiology B 161, 419426.CrossRefGoogle ScholarPubMed
Gäbel, G, Butter, H, Martens, H 1999. Regulatory role of cAMP in transport of Na+, Cl and short-chain fatty acids across sheep ruminal epithelium. Experimental Physiology 84, 333345.CrossRefGoogle Scholar
Gäbel, G, Müller, F, Pfannkuche, H, Aschenbach, JR 2001. Influence of isoform and DNP on butyrate transport across the sheep ruminal epithelium. Journal of Comparative Physiology B 171, 215221.Google ScholarPubMed
Gäbel, G, Aschenbach, JR, Müller, F 2002. Transfer of energy substrates across the ruminal epithelium: implications and limitations. Animal Health Research Reviews 3, 1530.CrossRefGoogle ScholarPubMed
Giebisch, G 1998. Renal potassium transport: mechanisms and regulation. American Journal of Physiology 274, F817F833.Google ScholarPubMed
Giesecke, D, von Engelhardt, W 1975. Funktionen des Blättermagens bei kleinen Hauswiederkäuern. II. Fermentationsrate und DNS-Gehalt. Zentralblatt für Veterinärmedizin A 22, 177186.CrossRefGoogle Scholar
Goytain, A, Quamme, GA 2005. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics 6, 48. doi:10.1186/1471-2164-6-48.CrossRefGoogle ScholarPubMed
Grace, ND, Ulyatt, MJ, MacRae, JC 1974. Quantitative digestion of fresh herbage by sheep. III. The movement of Mg, Ca, P, K and Na in the digestive tract. Journal of Agricultural Science 82, 321330.CrossRefGoogle Scholar
Grace, ND, Caple, IW, Care, AD 1988. Studies in sheep on the absorption of magnesium from a low molecular weight fraction of the reticulo-rumen contents. British Journal of Nutrition 59, 93108.CrossRefGoogle ScholarPubMed
Graham, C, Simmons, NL 2005. Functional organization of the bovine rumen epithelium. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 288, R173R181.CrossRefGoogle ScholarPubMed
Graham, C, Gatherar, I, Haslam, I, Glanville, M, Simmons, NL 2007. Expression and localization of monocarboxylate transporters and sodium/proton exchangers in bovine rumen epithelium. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 292, R997R1007.CrossRefGoogle ScholarPubMed
Greene, LW, Fontenot, JP, Webb, KE Jr 1983a. Site of magnesium and other macromineral absorption in steers fed high levels of potassium. Journal of Animal Science 57, 503510.CrossRefGoogle ScholarPubMed
Greene, LW, Webb, KE Jr, Fontenot, JP 1983b. Effect of potassium level on site of absorption of magnesium and other macroelements in sheep. Journal of Animal Science 56, 12141221.CrossRefGoogle ScholarPubMed
Harrison, FA 1971. Ion transport across rumen and omasum epithelium. Philosophical Transactions of the Royal Society of London B Biological Sciences 262, 301305.Google ScholarPubMed
Harrison, RA, Heynes, RD, Zurich, L 1970. Ion transport across isolated omasal epithelium of the sheep. Journal of Physiology 207, 24P25P.Google Scholar
Harrison, FA, Keynes, RD, Rankin, JC, Zurich, L 1975. The effect of ouabain on ion transport across isolated sheep rumen epithelium. Journal of Physiology 249, 669677.CrossRefGoogle ScholarPubMed
Helbig, H, Korbmacher, C, Stumpff, F, Coca-Prados, M, Wiederholt, M 1989. Role of HCO3- in regulation of cytoplasmic pH in ciliary epithelial cells. American Journal of Physiology Cell Physiology 257, C696C705.CrossRefGoogle ScholarPubMed
Henrikson, RC 1971. Mechanism of sodium transport across ruminal epithelium and histochemical localization of ATPase. Experimental Cell Research 68, 456458.CrossRefGoogle ScholarPubMed
Henseleit, M 1991. In vitro Unstersuchungen über einen elektrogenen Natriumtransport am isolierten Pansenepithel von Schafen. Thesis, School of Veterinary Medicine, Hannover, Germany.Google Scholar
Höller, H, Breves, G, Dubberke, M 1988a. Flux of inorganic phosphate and calcium across the isolated mucosa of the sheep omasum. Zentralblatt für Veterinärmedizin A 35, 709716.Google ScholarPubMed
Höller, H, Breves, G, Kocabatmaz, M, Gerdes, H 1988b. Flux of calcium across the sheep rumen wall in vivo and in vitro. Quarterly Journal of Experimental Physiology 73, 609618.CrossRefGoogle Scholar
Hoenderop, JG, Nilius, B, Bindels, RJ 2005. Calcium absorption across epithelia. Physiological Reviews 85, 373422.CrossRefGoogle ScholarPubMed
Hogan, JP 1961. The absorption of ammonia through the rumen of the sheep. Australian Journal of Biological Sciences 14, 448460.CrossRefGoogle Scholar
Hohls, C 1990. Calcium-Passage durch die Pansenwand von Schafen bei verschiedenen Calcium-Ionen-Konzentrationen und unter Einfluß von anorganischem Phosphat. Thesis, School of Veterinary Medicine, Hannover, Germany.Google Scholar
Holtenius, K, Kronqvist, C, Briland, E, Spörndly, R 2008. Magnesium absorption by lactating dairy cows on a grass silage-based diet supplied with different potassium and magnesium levels. Journal of Dairy Science 91, 743748.CrossRefGoogle ScholarPubMed
Huhn, K, Müller, F, Honscha, KU, Pfannkuche, H, Gäbel, G 2003. Molecular and functional evidence for a Na(+)-HCO3(-)-cotransporter in sheep ruminal epithelium. Journal of Comparative Physiology B 173, 277284.CrossRefGoogle Scholar
Hyden, S 1961. Observations on the absorption of inorganic ions from the reticulo-rumen of the sheep. Kungliga Lantbrukshögkolans Annaler 27, 273285.Google Scholar
Jittakhot, S, Schonewille, JT, Wouterse, H, Uijttewaal, AW, Yuangklang, C, Beynen, AC 2004a. Increasing magnesium intakes in relation to magnesium absorption in dry cows. Journal of Dairy Research 71, 297303.CrossRefGoogle ScholarPubMed
Jittakhot, S, Schonewille, JT, Wouterse, HS, Yuangklang, C, Beynen, AC 2004b. The relationships between potassium intakes, transmural potential difference of the rumen epithelium and magnesium absorption in wethers. British Journal of Nutrition 91, 183189.CrossRefGoogle Scholar
Johnson, CL, Aubrey Jones, DA 1989. Effect of change of diet on the mineral composition of rumen fluid, on magnesium metabolism and on water balance in sheep. British Journal of Nutrition 61, 583594.CrossRefGoogle ScholarPubMed
Kang-Meznarich, JH, Broderick, GA 1980. Effects of incremental urea supplementation on ruminal ammonia concentration and bacterial protein formation. Journal of Animal Science 51, 422431.CrossRefGoogle Scholar
Kay, RN 1960. The rate of flow and composition of various salivary secretions in sheep and calves. Journal of Physiology 150, 515537.CrossRefGoogle ScholarPubMed
Kemp, PJ, Kim, KJ 2004. Spectrum of ion channels in alveolar epithelial cells: implications for alveolar fluid balance. American Journal of Physiology Lung Cellular and Molecular Physiology 287, L460L464.CrossRefGoogle ScholarPubMed
Kiddle, P, Marshall, RA, Phillipson, AT 1951. A comparison of the mixtures of acetic, propionic and butyric acids in the rumen and in the blood leaving the rumen. Journal of Physiology 113, 207217.CrossRefGoogle ScholarPubMed
Khorasani, GR, Janzen, RA, McGill, WB, Kennelly, JJ 1997. Site and extent of mineral absorption in lactating cows fed whole-crop cereal grain silage of alfalfa silage. Journal of Animal Science 75, 239248.CrossRefGoogle ScholarPubMed
Kirat, D, Masuoka, J, Hayashi, H, Iwano, H, Yokota, H, Taniyama, H, Kato, S 2006. Monocarboxylate transporter 1 (MCT1) plays a direct role in short-chain fatty acids absorption in caprine rumen. Journal of Physiology 576, 635647.CrossRefGoogle Scholar
Kirat, D, Matsuda, Y, Yamashiki, N, Hayashi, H, Kato, S 2007. Expression, cellular localization, and functional role of monocarboxylate transporter 4 (MCT4) in the gastrointestinal tract of ruminants. Gene 391, 140149.CrossRefGoogle ScholarPubMed
Kozak, JA, Matsushita, M, Nairn, AC, Cahalan, MD 2005. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. Journal of General Physiology 126, 499514.CrossRefGoogle ScholarPubMed
Kramer, T, Michelberger, T, Gürtler, H, Gäbel, G 1996. Absorption of short-chain fatty acids across ruminal epithelium of sheep. Journal of Comparative Physiology B 166, 262269.CrossRefGoogle ScholarPubMed
Kristensen, NB, Gäbel, G, Pierzynowski, SG, Danfaer, A 2000. Portal recovery of short-chain fatty acids infused into the temporarily-isolated and washed reticulorumen of sheep. British Journal of Nutrition 84, 477482.CrossRefGoogle ScholarPubMed
Kronshage, N, Leonhard-Marek, S 2009. Potassium transport across gastrointestinal epithelia of ruminants. In Ruminant physiology: digestion, metabolism, and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Bocquier, I Veissir and M Doreau), pp. 248249. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Lam, TI, Wise, PM, O’Donnell, ME 2009. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. American Journal of Physiology Cell Physiology 297, C278C289.CrossRefGoogle ScholarPubMed
Lang, I, Martens, H 1999. Na transport in sheep rumen is modulated by voltage-dependent cation conductance in apical membrane. American Journal of Physiology Gastrointestinal and Liver Physiology 277, G609G618.CrossRefGoogle ScholarPubMed
Lean, IJ, Degaris, PJ, McNeil, DM, Block, E 2006. Hypocalcemia in dairy cows: meta-analysis and dietary cation anion difference theory revisited. Journal of Dairy Science 89, 669684.CrossRefGoogle ScholarPubMed
Leonhard, S, Smith, E, Martens, H, Gäbel, G, Ganzoni, E 1990. Transport of magnesium across an isolated preparation of sheep rumen: a comparison of MgCl2, Mg aspartate, Mg pidolate and Mg-EDTA. Magnesium and Trace Elements 9, 265271.Google ScholarPubMed
Leonhard, S, Martens, H, Gäbel, G 1991. Ruminal Mg transport. A model for transepithelial Mg movement? In Magnesium – a relevant ion (ed. B Lasserre and J Durlach), pp. 139143. John Libbey, London, UK.Google Scholar
Leonhard-Marek, S 1999. Do forestomach epithelia exhibit a Mg2+/2H+-exchanger? Magnesium Research 12, 99108.Google ScholarPubMed
Leonhard-Marek, S 2002. Divalent cations reduce the electrogenic transport of monovalent cations across rumen epithelium. Journal of Comparative Physiology B 172, 635641.Google ScholarPubMed
Leonhard-Marek, S, Martens, H 1994. Influences of Na on Mg transport across sheep rumen epithelium. Proceedings of the Society of Nutrition Physiology 3, 88.Google Scholar
Leonhard-Marek, S, Martens, H 1996. Effects of potassium on magnesium transport across rumen epithelium. American Journal of Physiology Gastrointestinal and Liver Physiology 271, G1034G1038.CrossRefGoogle ScholarPubMed
Leonhard-Marek, S, Schröder, B 2002. Influence of mucosal Cl concentration on electrogenic cation transport across sheep and goat rumen. Journal of Physiology and Biochemistry 58, P22.Google Scholar
Leonhard-Marek, S, Gäbel, G, Martens, H 1998a. Effects of short chain fatty acids and carbon dioxide on magnesium transport across sheep rumen epithelium. Experimental Physiology 83, 155164.CrossRefGoogle ScholarPubMed
Leonhard-Marek, S, Marek, M, Martens, H 1998b. Effect of transmural potential difference on Mg transport across rumen epithelium from four different breeds of sheep. Journal of Agricultural Science 130, 241247.CrossRefGoogle Scholar
Leonhard-Marek, S, Stumpff, F, Brinkmann, I, Breves, G, Martens, H 2005. Basolateral Mg2+/Na+ exchange regulates apical non-selective cation channel in sheep rumen epithelium via cytosolic Mg2+. American Journal of Physiology Gastrointestinal and Liver Physiology 288, G630G645.CrossRefGoogle Scholar
Leonhard-Marek, S, Breves, G, Busche, R 2006. Effect of chloride on pH microclimate and electrogenic Na+ absorption across the rumen epithelium of goat and sheep. American Journal of Physiology Gastrointestinal and Liver Physiology 291, G246G252.CrossRefGoogle ScholarPubMed
Leonhard-Marek, S, Becker, G, Breves, G, Schröder, B 2007a. Chloride, gluconate, sulfate and short chain fatty acids affect Ca flux rates across sheep forestomach epithelium. Journal of Dairy Science 90, 15161526.CrossRefGoogle ScholarPubMed
Leonhard-Marek, S, Busche, R, Schröder, B 2007b. Effects of anions on Ca absorption across the rumen. Journal of Animal and Feed Sciences 16 (suppl. 2), 543547.CrossRefGoogle Scholar
Maekawa, M, Beauchemin, KA, Christensen, DA 2002. Chewing activity, saliva production, and ruminal pH of primiparous and multiparous lactating dairy cows. Journal of Dairy Science 85, 11761182.CrossRefGoogle ScholarPubMed
Martens, H 1994. Saturation kinetics of electrogenic and electroneutral Na transport of sheep rumen epithelium. Proceedings of the Society of Nutrition Physiology 3, 87.Google Scholar
Martens, H, Blume, I 1986. Effect of intraruminal sodium and potassium concentrations and of the transmural potential difference on magnesium absorption from the temporarily isolated rumen of sheep. Quarterly Journal of Experimental Physiology 71, 409415.CrossRefGoogle ScholarPubMed
Martens, H, Gäbel, G 1988. Transport of Na and Cl across the epithelium of ruminant forestomachs: rumen and omasum. Comparative Biochemistry and Physiology A 90, 569575.CrossRefGoogle ScholarPubMed
Martens, H, Hammer, U 1981. Magnesium and sodium absorption from the isolated sheep rumen during intravenous aldosterone infusion (author’s translation). Deutsche Tierärztliche Wochenschrift 88, 404407.Google Scholar
Martens, H, Rayssiguier, Y 1980. Magnesium metabolism and hypomagnesaemia. In Digestive physiology and metabolism in ruminants (ed. Y Ruckebusch and P Thivend), pp. 447466. MTP Press, Lancaster, UK.CrossRefGoogle Scholar
Martens, H, Gäbel, G, Strozyk, H 1987. The effect of potassium and the transmural potential difference on magnesium transport across an isolated preparation of sheep rumen epithelium. Quarterly Journal of Experimental Physiology 72, 181188.CrossRefGoogle ScholarPubMed
Martens, H, Heggemann, G, Regier, K 1988. Studies on the effect of K, Na, NH4+, VFA and CO2 on the net absorption of magnesium from the temporarily isolated rumen of heifers. Zentralblatt für Veterinärmedizin A 35, 7380.CrossRefGoogle Scholar
Martens, H, Gäbel, G, Strozyk, B 1991. Mechanism of electrically silent Na and Cl transport across the rumen epithelium of sheep. Experimental Physiology 76, 103114.CrossRefGoogle ScholarPubMed
Martens, H, Krützfeld, T, Wolf, K 2004. Sodium transport across the isolated epithelium of sheep omasum is influenced by luminal ammonia. Journal of Veterinary Medicine A Physiology Pathology Clinical Medicine 51, 4651.CrossRefGoogle ScholarPubMed
Morgan, EL, Mace, OJ, Helliwell, PA, Affleck, J, Kellett, GL 2003. A role for Ca(v)1.3 in rat intestinal calcium absorption. Biochemical and Biophysical Research Communications 312, 487493.CrossRefGoogle ScholarPubMed
Mount, DB, Romero, MF 2004. The SLC26 gene family of multifunctional anion exchangers. Pflügers Archiv – European Journal of Physiology 447, 710721.CrossRefGoogle ScholarPubMed
Müller, F, Aschenbach, JR, Gäbel, G 2000. Role of Na+/H+ exchange and HCO3- transport in pHi recovery from intracellular acid load in cultured epithelial cells of sheep rumen. Journal of Comparative Physiology B 170, 337343.Google ScholarPubMed
Müller, F, Huber, K, Pfannkuche, H, Aschenbach, JR, Breves, G, Gäbel, G 2002. Transport of ketone bodies and lactate in the sheep ruminal epithelium by monocarboxylate transporter 1. American Journal of Physiology Gastrointestinal and Liver Physiology 283, G1139G1146.CrossRefGoogle ScholarPubMed
Niebuhr, V 2003. In vitro Untersuchungen zum Bicarbonattransport des Blättermagenepithels von Schafen. Thesis, Free University Berlin, Germany.Google Scholar
Nolan, JV, Strachin, S 1979. Fermentation and nitrogen dynamics in Merino sheep given a low-quality-roughage diet. British Journal of Nutrition 42, 6380.CrossRefGoogle Scholar
Penner, GB, Aschenbach, JR, Gäbel, G, Rackwitz, R, Oba, M 2009a. Epithelial capacity for apical uptake of short chain fatty acids is a key determinant for intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep. Journal of Nutrition 139, 17141720.Google ScholarPubMed
Penner, GB, Taniguchi, M, Guan, LL, Beauchemin, KA, Oba, M 2009b. Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science 92, 27672781.CrossRefGoogle ScholarPubMed
Pfeffer, E, Rahman, KA 1974. Untersuchungen zur Lokalisation der Magnesiumabsorption beim Wiederkäuer. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 33, 209213.Google Scholar
Pfeffer, E, Thompson, A, Armstrong, DG 1970. Studies on intestinal digestion in the sheep. 3. Net movement of certain inorganic elements in the digestive tract on rations containing different proportions of hay and rolled barley. British Journal of Nutrition 24, 197204.CrossRefGoogle ScholarPubMed
Pietrobon, D, Prod’hom, B, Hess, P 1989. Interactions of protons with single open L-type calcium channels. pH dependence of proton-induced current fluctuations with Cs+, K+, and Na+ as permeant ions. Journal of General Physiology 94, 121.CrossRefGoogle Scholar
Rabinowitz, L, Sarason, RL, Yamauchi, H 1984. Sheep renal potassium excretion: efferent kaliuretic regulatory factors. American Journal of Physiology Renal Physiology 247, F520F526.CrossRefGoogle Scholar
Rahnema, S, Wu, Z, Ohajuruka, OA, Weiss, WP, Palmquist, DL 1994. Site of mineral absorption in lactating cows fed high-fat diets. Journal of Animal Science 72, 229235.CrossRefGoogle ScholarPubMed
Ram, L, Schonewille, JT, Martens, H, Van’t Klooster, AT, Beynen, AC 1998. Magnesium absorption by wethers fed potassium bicarbonate in combination with different dietary magnesium concentrations. Journal of Dairy Science 81, 24852492.CrossRefGoogle ScholarPubMed
Rechkemmer, G, Gäbel, G, Diernæs, L, Sehested, J, Møller, PD, von Engelhardt, W 1995. Transport of short chain fatty acids in the forestomach and hindgut. In Ruminant physiology: digestion, metabolism, growth and reproduction (ed. W von Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 95116. Enke Verlag, Stuttgart, Germany.Google Scholar
Romero, MF, Fulton, CM, Boron, WF 2004. The SLC4 family of HCO3 transporters. Pflügers Archiv – European Journal of Physiology 447, 495509.CrossRefGoogle Scholar
Rossier, BC 2003. The epithelial sodium channel (ENaC): new insights into ENaC gating. Pflügers Archiv – European Journal of Physiology 446, 314316.CrossRefGoogle ScholarPubMed
Rübbelke, MK 1998. In vitro Untersuchungen des Pansenepithels von Schafen zur Charakterisierung eines elektrogenen, Calcium-sensitiven Natriumtransportes. Thesis, Free University Berlin, Germany.Google Scholar
Sather, WA, McCleskey, EW 2003. Permeation and selectivity in calcium channels. Annual Review of Physiology 65, 133159.CrossRefGoogle ScholarPubMed
Satter, LD, Slyter, LL 1974. Effect of ammonia concentration on rumen microbial protein production in vitro. British Journal of Nutrition 32, 199208.CrossRefGoogle ScholarPubMed
Schnorr, B 1971. Histochemical, electron microscopic and biochemical studies on ATPases in the forestomach epithelium of goats. Zeitschrift für Zellforschung und Mikroskopische Anatomie 114, 365389.CrossRefGoogle Scholar
Schröder, B, Breves, G 2006. Mechanisms and regulation of calcium absorption from the gastrointestinal tract in pigs and ruminants: comparative aspects with special emphasis on hypocalcemia in dairy cows. Animal Health Research Reviews 7, 3141.CrossRefGoogle ScholarPubMed
Schröder, B, Rittmann, I, Pfeffer, E, Breves, G 1997. In vitro studies on calcium absorption from the gastrointestinal tract in small ruminants. Journal of Comparative Physiology B 167, 4351.Google ScholarPubMed
Schröder, B, Vössing, S, Breves, G 1999. In vitro studies on active calcium absorption from ovine rumen. Journal of Comparative Physiology B 169, 487494.Google ScholarPubMed
Schultheiss, G, Martens, H 1999. Ca-sensitive Na transport in sheep omasum. American Journal of Physiology Gastrointestinal and Liver Physiology 276, G1331G1344.CrossRefGoogle ScholarPubMed
Schweigel, M, Martens, H 2003. Anion-dependent Mg2+ influx and a role for a vacuolar H+-ATPase in sheep ruminal epithelial cells. American Journal of Physiology Gastrointestinal and Liver Physiology 285, G45G53.CrossRefGoogle Scholar
Schweigel, M, Freyer, M, Leclercq, S, Etschmann, B, Lodemann, U, Böttcher, A, Martens, H 2005. Luminal hyperosmolarity decreases Na transport and impairs barrier function of sheep rumen epithelium. Journal of Comparative Physiology B 175, 575591.CrossRefGoogle ScholarPubMed
Schweigel, M, Park, HS, Etschmann, B, Martens, H 2006. Characterization of the Na+-dependent Mg2+ transport in sheep ruminal epithelial cells. American Journal of Physiology Gastrointestinal and Liver Physiology 290, G56G65.CrossRefGoogle ScholarPubMed
Schweigel, M, Kolisek, M, Nikolic, Z, Kuzinski, J 2008. Expression and functional activity of the Na/Mg exchanger, TRPM7 and MagT1 are changed to regulate Mg homeostasis and transport in rumen epithelial cells. Magnesium Research 21, 118123.Google ScholarPubMed
Scott, D 1966. The effects of sodium depletion and potassium supplements upon electrical potentials in the rumen of the sheep. Quarterly Journal of Experimental Physiology 51, 6069.CrossRefGoogle ScholarPubMed
Scott, D 1967. The effects of potassium supplements upon the absorption of potassium and sodium from the sheep rumen. Quarterly Journal of Experimental Physiology 52, 382391.CrossRefGoogle ScholarPubMed
Sehested, J, Diernaes, L, Moller, PD, Skadhauge, E 1993. Interaction between absorption of sodium and acetate across the rumen epithelium of cattle. Acta Veterinaria Scandinavica. Supplementum 89, 107108.Google ScholarPubMed
Sehested, J, Diernaes, L, Moller, PD, Skadhauge, E 1996. Transport of sodium across the isolated bovine rumen epithelium: Interaction with short-chain fatty acids, chloride and bicarbonate. Experimental Physiology 81, 7994.CrossRefGoogle ScholarPubMed
Sehested, J, Diernaes, L, Moller, PD, Skadhauge, E 1999. Transport of butyrate across the isolated bovine rumen epithelium: Interaction with sodium, chloride and bicarbonate. Comparative Biochemistry and Physiology A 123, 399408.CrossRefGoogle ScholarPubMed
Seidler, U, Singh, AK, Cinar, A, Chen, M, Hillesheim, J, Hogema, B, Riederer, B 2009. The role of the NHERF family of PDZ scaffolding proteins in the regulation of salt and water transport. Annals of the New York Academy of Sciences 1165, 249260.CrossRefGoogle ScholarPubMed
Silanikove, N 1994. The struggle to maintain hydration and osmoregulation in animals experiencing severe dehydration and rapid rehydration: the story of ruminants. Experimental Physiology 79, 281300.CrossRefGoogle ScholarPubMed
Silanikove, N, Tadmor, A 1989. Rumen volume, saliva flow rate, and systemic fluid homeostasis in dehydrated cattle. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 256, R809R815.CrossRefGoogle ScholarPubMed
Simmons, NL, Chaudhry, AS, Graham, C, Scriven, ES, Thistlethwaite, A, Smith, CP, Stewart, GS 2009. Dietary regulation of ruminal bovine UT-B urea transporter expression and localization. Journal of Animal Science 87, 32883299.CrossRefGoogle ScholarPubMed
Smith, RH 1984. Microbial activity in the omasum. Proceedings of the Nutrition Society 43, 6368.CrossRefGoogle ScholarPubMed
Stacy, BD, Warner, ACI 1966. Balances of water and sodium in the rumen during feeding: osmotic stimulation of sodium absorption in the sheep. Quarterly Journal of Experimental Physiology 51, 7993.CrossRefGoogle ScholarPubMed
Stacy, BD, Warner, ACI 1972. Acute effects on hypertonicity on the potential difference across the rumen wall in sheep. Comparative Biochemistry and Physiology A 43, 637641.CrossRefGoogle ScholarPubMed
Storeheier, PV, Sehested, J, Diernaes, L, Sundset, MA, Mathiesen, SD 2003. Effects of seasonal changes in food quality and food intake on the transport of sodium and butyrate across ruminal epithelium of reindeer. Journal of Comparative Physiology B 173, 391399.CrossRefGoogle ScholarPubMed
Stumpff, F, Martens, H 2007a. A role for magnesium in the regulation of ruminal sodium transport. In Focus on signal transduction research (ed. G McAlpine), pp. 3766. Nova Science Publishers Inc., New York, NY, USA. ISBN:13-978-1-60021-376-2.Google Scholar
Stumpff, F, Martens, H 2007b. The rumen and potassium homeostasis: a model. Journal of Animal and Feed Sciences 16 (suppl. 2), 436441.CrossRefGoogle Scholar
Stumpff, F, Martens, H, Bilk, S, Aschenbach, JR, Gäbel, G 2009a. Cultured ruminal epithelial cells express a large-conductance channel permeable to chloride, bicarbonate, and acetate. Pflügers Archiv – European Journal of Physiology 457, 10031022.CrossRefGoogle ScholarPubMed
Stumpff, F, Georgi, M, Martens, H, Aschenbach, JR, Gäbel, G 2009b. Ruminal epithelial cells express a conductance for propionate. Acta Physiologica 195 (suppl. 669), P175.Google Scholar
Stumpff, F, Georgi, M, Martens, H 2009c. The ruminal anion channel: a pathway for the efflux of SCFA. In Ruminant physiology: digestion, metabolism, and effects of nutrition on reproduction and welfare (ed. Y Chilliard, F Glasser, Y Bocquier, I Veissir and M Doreau), pp. 366367. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Svendsen, PE 1975. Experimental studies of gastro-intestinal atony in ruminants. In Digestion and metabolism in the ruminant (ed. IW McDonald and ACI Warner), pp. 563575. University of New England Publishing Unit, Armidale.Google Scholar
Szatkowski, MS, Thomas, RC 1989. The intrinsic intracellular H+ buffering power of snail neurones. Journal of Physiology 409, 89101.CrossRefGoogle ScholarPubMed
Tamminga, S, van Vuuren, AM 1988. Formation and utilization of end products of lignocellulose degradation in ruminants. Animal Feed Science and Technology 21, 141159.CrossRefGoogle Scholar
Tiling, C 1997. In vitro Untersuchungen zum Chloridionentransport des Blättermagenepithels von Schafen. Thesis, Free University Berlin, Germany.Google Scholar
Tomas, FM, Potter, BJ 1976. The site of magnesium absorption from the ruminant stomach. British Journal of Nutrition 36, 3745.CrossRefGoogle ScholarPubMed
Uppal, SK, Wolf, K, Martens, H 2003. The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay-fed and concentrate-fed sheep. Journal of Animal Physiology and Animal Nutrition 87, 1220.CrossRefGoogle ScholarPubMed
Vennekens, R, Prenen, J, Hoenderop, JGJ, Bindels, RJM, Droogmans, G, Nilius, B 2001. Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflügers Archiv – European Journal of Physiology 442, 237242.CrossRefGoogle ScholarPubMed
Vogler, S 1991. Natrium- und Chloridtransport über das isolierte Netzmagenepithel von Schafen. Thesis, Free University Berlin, Germany.Google Scholar
Von Engelhardt, W, Hauffe, R 1975. Functions of the omasum in small domestic ruminants. IV. Resorption and secretion of electrolytes. Zentralblatt für Veterinärmedizin A 22, 363375.Google ScholarPubMed
Wadhwa, DR, Care, AD 2000. The absorption of calcium ions from the ovine reticulo-rumen. Journal of Comparative Physiology B 170, 581588.CrossRefGoogle ScholarPubMed
Wadhwa, DR, Care, AD 2002. The absorption of phosphate ions from the ovine reticulorumen. Veterinary Journal 163, 182186.CrossRefGoogle ScholarPubMed
Walter, A, Hastings, D, Gutknecht, J 1982. Weak acid permeability through lipid bilayer membranes. Role of chemical reactions in the unstirred layer. Journal of General Physiology 79, 917933.CrossRefGoogle ScholarPubMed
Warner, ACI, Stacy, BD 1972. Water, sodium and potassium movements across the rumen wall of sheep. Quarterly Journal of Experimental Physiology 57, 103119.CrossRefGoogle ScholarPubMed
Wegeler, C 2008. Transport von HCO3- am isolierten Psalterepithel des Schafes – Charakterisierung und Einfluss der Fütterung. Thesis, Free University Berlin, Germany.Google Scholar
Weigand, E, Young, JW, McGilliard, AD 1975. Volatile fatty acid metabolism by rumen mucosa from cattle fed hay or grain. Journal of Dairy Science 58, 12941300.CrossRefGoogle ScholarPubMed
Weiss, WP 2004. Macromineral digestion by lactating dairy cows: Factors affecting digestibility of magnesium. Journal of Dairy Science 87, 21672171.CrossRefGoogle ScholarPubMed
Wernli, CG, Wilkins, RJ 1980. Nutritional studies with sheep fed conserved grass. 1. Silage and dried grass offered ad libitum without supplements. Journal of Agricultural Science 94, 209218.CrossRefGoogle Scholar
Wilkens, MR 2006. Strukturelle und funktionelle Untersuchungen zum transepithelialen Calcium-Transport beim Schaf. Thesis, School of Veterinary Medicine Hannover, Germany.Google Scholar
Wilkens, MR, Kunert-Keil, C, Brinkmeier, H, Schröder, B 2009. Expression of calcium channel TRPV6 in ovine epithelial tissue. Veterinary Journal 182, 294300.CrossRefGoogle ScholarPubMed
Wolffram, S, Frischknecht, R, Scharrer, E 1989. Influence of theophylline on the electrical potential difference and ion fluxes (Na, Cl, K) across the isolated rumen epithelium of sheep. Journal of Veterinary Medicine A 36, 755762.CrossRefGoogle Scholar
Würmli, R, Wolffram, S, Scharrer, E 1987. Inhibition of chloride absorption from the sheep rumen by nitrate. Zentralblatt für Veterinärmedizin A 34, 476479.CrossRefGoogle ScholarPubMed
Yang, MG, Thomas, JW 1965. Absorption and secretion of some organic and inorganic constituents and the distribution of these constituents throughout the alimentary tract of young calves. Journal of Nutrition 87, 444458.CrossRefGoogle ScholarPubMed
Yano, F, Yano, H, Breves, G 1991. Calcium and phosphorus metabolism in ruminants. In Physiological aspects of digestion and metabolism in ruminants (ed. T Tsuda, Y Sasaki and R Kawashima), pp. 277295. Academic Press, San Diego, CA, USA.CrossRefGoogle Scholar
Zachos, NC, Tse, M, Donowitz, M 2005. Molecular physiology of intestinal Na+/H+ exchange. Annual Review of Physiology 67, 411443.CrossRefGoogle ScholarPubMed