Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:07:49.144Z Has data issue: false hasContentIssue false

Potential role of sirtuins in livestock production

Published online by Cambridge University Press:  08 June 2012

Y. Ghinis-Hozumi
Affiliation:
Programa de Posgrado en Ciencias de la Producción y de la Salud Animal, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, México
A. Antaramian
Affiliation:
Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Qro. 76230, México
F. Villarroya
Affiliation:
Departamento de Bioquímica y Biología Molecular e Instituto de Biomedicina (IBUB), Universitat de Barcelona y Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición, Avenida Diagonal 645, Barcelona 08028, Spain
E. Piña
Affiliation:
Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, México
O. Mora*
Affiliation:
Laboratorio de Rumiología y Metabolismo Nutricional (RuMeN), Secretaría de Posgrado, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de México, Boulevard Bernardo Quintana 514-D, Colonia Arboledas, Querétaro, Qro. 76140, México
Get access

Abstract

Sirtuins are NAD+-dependent histone and protein deacetylases, which have been studied during the last decade with a focus on their role in lifespan extension and age-related diseases under normal and calorie-restricted or pathological conditions. However, sirtuins also have the ability to regulate energy homeostasis as they can sense the metabolic state of the cell through the NAD+/NADH ratio; hence, changes in the diet can modify the expression of these enzymes. Dietary manipulations are a common practice currently being used in livestock production with favorable results, probably due in part to the enhanced activity of sirtuins. Nevertheless, sirtuin expression in livestock species has not been a research target. For these reasons, the goal of this review is to awaken interest in these enzymes for future detailed characterization in livestock species by presenting a general introduction to what sirtuins are, how they work and what is known about their role in livestock.

Type
Physiology and functional biology of systems
Copyright
Copyright © The Animal Consortium 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, BH, Kim, HS, Song, S, Lee, IH, Liu, J, Vassilopoulos, A, Deng, CX, Finkel, T 2008. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proceedings of the National Academy of Sciences of the United States of America 105, 1444714452.Google Scholar
Ahuja, N, Schwer, B, Carobbio, S, Waltregny, D, North, BJ, Castronovo, V, Maechler, P, Verdin, E 2007. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. The Journal of Biological Chemistry 282, 3358333592.CrossRefGoogle ScholarPubMed
Amat, R, Solanes, G, Giralt, M, Villarroya, F 2007. SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription. The Journal of Biological Chemistry 282, 3406634076.Google Scholar
Avram, D, Fields, A, Senawong, T, Topark-Ngarm, A, Leid, M 2002. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein. The Biochemical Journal 368, 555563.Google Scholar
Bae, NS, Swanson, MJ, Vassilev, A, Howard, BH 2004. Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10. Journal of Biochemistry 135, 695700.Google Scholar
Bai, L, Pang, WJ, Yang, YJ, Yang, GS 2008. Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Molecular and Cellular Biochemistry 307, 129140.CrossRefGoogle ScholarPubMed
Bordone, L, Guarente, L 2005. Calorie restriction, Sirt1 and metabolism: understanding longevity. Nature Reviews. Molecular Cell Biology 6, 298305.Google Scholar
Bordone, L, Motta, MC, Picard, F, Robinson, A, Jhala, US, Apfeld, J, McDonagh, T, Lemieux, M, McBurney, M, Szilvasi, A, Easlon, EJ, Lin, SJ, Guarente, L 2006. Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. Public Library of Science Biology 4, e31. Erratum in: Public Library of Science Biology (2006) 4, e295.Google Scholar
Borra, MT, Denu, JM 2006. The enzymology of SIR2 proteins. In Histone deacetylases: transcriptional regulation and other cellular functions (ed. E Verdin), pp. 219235. Humana Press Inc., New Jersey, USA.Google Scholar
Borra, MT, Langer, MR, Slama, JT, Denu, JM 2004. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemistry 43, 98779887.Google Scholar
Brachmann, CB, Sherman, JM, Devine, SE, Cameron, EE, Pillus, L, Boeke, JD 1995. The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes and Development 9, 28882902.Google Scholar
Braunstein, M, Rose, AB, Holmes, SG, Allis, CD, Broach, JR 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes and Development 7, 592604.Google Scholar
Brunet, A, Sweeney, LB, Sturgill, JF, Chua, KF, Greer, PL, Lin, Y, Tran, H, Ross, SE, Mostoslavsky, R, Cohen, HY, Hu, LS, Cheng, HL, Jedrychowski, MP, Gygi, SP, Sinclair, DA, Alt, FW, Greenberg, ME 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 20112015.Google Scholar
Burnett, C, Valentini, S, Cabreiro, F, Goss, M, Somogyvári, M, Piper, MD, Hoddinott, M, Sutphin, GL, Leko, V, McElwee, JJ, Vazquez-Manrique, RP, Orfila, AM, Ackerman, D, Au, C, Vinti, G, Riesen, M, Howard, K, Neri, C, Bedalov, A, Kaeberlein, M, Soti, C, Partridge, L, Gems, D 2011. Absence of effects of Sir2 overexpression on lifespan in C. elegans and drosophila. Nature 477, 482485.Google Scholar
Camins, A, Sureda, FX, Junyent, F, Verdaguer, E, Folch, J, Pelegri, C, Vilaplana, J, Beas-Zarate, C, Pallàs, M 2010. Sirtuin activators: designing molecules to extend life span. Biochimica et Biophysica Acta 1799, 740749.Google Scholar
Cantó, C, Auwerx, J 2012. Targeting sirtuin 1 to improve metabolism: all you need is NAD+? Pharmacological Reviews 64, 166187.Google Scholar
Cen, Y 2010. Sirtuins inhibitors: the approach to affinity and selectivity. Biochimica et Biophysica Acta 1804, 16351644.Google Scholar
Chen, D, Bruno, J, Easlon, E, Lin, S-J, Cheng, H-L, Alt, FW, Guarente, L 2008. Tissue-specific regulation of SIRT1 by calorie restriction. Genes and Development 22, 17531757.CrossRefGoogle ScholarPubMed
Cimen, H, Han, MJ, Yang, Y, Tong, Q, Koc, H, Koc, EC 2010. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochemistry 49, 304311.Google Scholar
Cohen, HY, Miller, C, Bitterman, KJ, Wall, NR, Hekking, B, Kessler, B, Howitz, KT, Gorospe, M, de Cabo, R, Sinclair, DA 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390392.Google Scholar
Cuperus, G, Shafaatian, R, Shore, D 2000. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. The European Molecular Biology Organization Journal 19, 26412651.Google Scholar
Dali-Youcef, N, Lagouge, M, Froelich, S, Koehl, C, Schoonjans, K, Auwerx, J 2007. Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Annals of Medicine 39, 335345.Google Scholar
Denu, JM 2003. Linking chromatin function with metabolic networks: Sir2 family of NAD(+)-dependent deacetylases. Trends in Biochemical Sciences 28, 4148.Google Scholar
Drummond, AJ, Ashton, B, Buxton, S, Cheung, M, Cooper, A, Duran, C, Field, M, Heled, J, Kearse, M, Markowitz, S, Moir, R, Stones-Havas, S, Sturrock, S, Thierer, T, Wilson, A 2011. Geneious v5.4. Retrieved January 17, 2012, from http://www.geneious.com/ (downloaded version Geneious v5.5.6).Google Scholar
Finnin, MS, Donigian, JR, Pavletich, NP 2001. Structure of the histone deacetylase SIRT2. Nature Structural Biology 8, 621625.Google Scholar
Food and Agriculture Organization of the United Nations (FAO) 1998. Biotechnology developments and their potential impacts on the livestock and meat sectors. Committee on Commodity Problems. Intergovernmental Group on Meat, Cape Town, Republic of South Africa. Retrieved April 29, 2011, from http://www.fao.org/docrep/meeting/W9681E.htmGoogle Scholar
FAO 2000. FAO statement on biotechnology. Biotechnology in Food and Agriculture, Rome, Italy. Retrieved May 30, 2011, from http://www.fao.org/biotech/fao-statement-on-biotechnology/en/Google Scholar
FAO 2009. The State of Food and Agriculture: Livestock in the Balance, Rome, Italy. Retrieved April 29, 2011, from http://www.fao.org/docrep/012/i0680e/i0680e00.htmGoogle Scholar
Ford, E, Voit, R, Liszt, G, Magin, C, Grummt, I, Guarente, L 2006. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes and Development 20, 10751080.Google Scholar
Frye, RA 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochemical and Biophysical Research Communications 273, 793798.CrossRefGoogle ScholarPubMed
Fulco, M, Schiltz, RL, Iezzi, S, King, MT, Zhao, P, Kashiwaya, Y, Hoffman, E, Veech, RL, Sartorelli, V 2003. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Molecular Cell 12, 51–62. Erratum in: Molecular Cell (2005) 20, 491.Google Scholar
Garcia, SN, Pillus, L 2002. A unique class of conditional sir2 mutants displays distinct silencing defects in Saccharomyces cerevisiae. Genetics 162, 721736.CrossRefGoogle ScholarPubMed
Gerhart-Hines, Z, Rodgers, JT, Bare, O, Lerin, C, Kim, SH, Mostoslavsky, R, Alt, FW, Wu, Z, Puigserver, P 2007. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. The European Molecular Biology Organization Journal 26, 19131923.Google Scholar
Ghinis-Hozumi, Y, González-Gallardo, A, González-Dávalos, L, Antaramian, A, Villarroya, F, Shimada, A, Varela-Echavarría, A, Mora, O 2011. Bovine sirtuins: initial characterization and expression of Sirt1 and Sirt3 in liver, muscle, and adipose tissue. Journal of Animal Science 89, 25292536.Google Scholar
Giannakou, ME, Partridge, L 2004. The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends in Cell Biology 14, 408412.Google Scholar
Giralt, A, Hondares, E, Villena, JA, Ribas, F, Díaz-Delfín, J, Giralt, M, Iglesias, R, Villarroya, F 2011. Peroxisome proliferator-activated receptor-gamma coactivator-1alpha controls transcription of the Sirt3 gene, an essential component of the thermogenic brown adipocyte phenotype. The Journal of Biological Chemistry 286, 1695816966.Google Scholar
Haigis, MC, Sinclair, DA 2010. Mammalian sirtuins: biological insights and disease relevance. Annual Review of Pathology 5, 253295.Google Scholar
Haigis, MC, Mostoslavsky, R, Haigis, KM, Fahie, K, Christodoulou, DC, Murphy, AJ, Valenzuela, DM, Yancopoulos, GD, Karow, M, Blander, G, Wolberger, C, Prolla, TA, Weindruch, R, Alt, FW, Guarente, L 2006. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell 126, 941954.CrossRefGoogle ScholarPubMed
Hallows, WC, Lee, S, Denu, JM 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proceedings of the National Academy of Sciences of the United States of America 103, 1023010235.CrossRefGoogle ScholarPubMed
Hallows, WC, Yu, W, Smith, BC, Devries, MK, Ellinger, JJ, Someya, S, Shortreed, MR, Prolla, T, Markley, JL, Smith, LM, Zhao, S, Guan, KL, Denu, JM 2011. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction. Molecular Cell 41, 139–149. Erratum in: Molecular Cell (2011) 41, 493.Google Scholar
Han, E-S, Hickey, M 2005. Microarray evaluation of dietary restriction. The Journal of Nutrition 135, 13431346.Google Scholar
Hirschey, MD, Shimazu, T, Goetzman, E, Jing, E, Schwer, B, Lombard, DB, Grueter, CA, Harris, C, Biddinger, S, Ilkayeva, OR, Stevens, RD, Li, Y, Saha, AK, Ruderman, NB, Bain, JR, Newgard, CB, Farese, RV Jr., Alt, FW, Kahn, CR, Verdin, E 2010. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464, 121125.Google Scholar
Howitz, KT, Bitterman, KJ, Cohen, HY, Lamming, DW, Lavu, S, Wood, JG, Zipkin, RE, Chung, P, Kisielewski, A, Zhang, LL, Scherer, B, Sinclair, DA 2003. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191196.Google Scholar
Huang, JY, Hirschey, MD, Shimazu, T, Ho, L, Verdin, E 2010. Mitochondrial sirtuins. Biochimica et Biophysica Acta 1804, 16451651.Google Scholar
Imai, S, Guarente, L 2010. Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends in Pharmacological Sciences 31, 212220.CrossRefGoogle ScholarPubMed
Jacobs, KM, Pennington, JD, Bisht, KS, Aykin-Burns, N, Kim, HS, Mishra, M, Sun, L, Nguyen, P, Ahn, BH, Leclerc, J, Deng, CX, Spitz, DR, Gius, D 2008. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. International Journal of Biological Sciences 4, 291299.Google Scholar
Jin, D, Tan, HJ, Lei, T, Gan, L, Chen, XD, Long, QQ, Feng, B, Yang, ZQ 2009. Molecular cloning and characterization of porcine sirtuin genes. Comparative Biochemistry and Physiology – Part B, Biochemistry and Molecular Biology 153, 348358.Google Scholar
Jing, E, Gesta, S, Kahn, CR 2007. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metabolism 6, 105114.Google Scholar
Kanfi, Y, Shalman, R, Peshti, V, Pilosof, SN, Gozlan, YM, Pearson, KJ, Lerrer, B, Moazed, D, Marine, JC, de Cabo, R, Cohen, HY 2008. Regulation of SIRT6 protein levels by nutrient availability. Federation of European Biochemical Societies Letters 582, 543548.CrossRefGoogle ScholarPubMed
Kelly, G 2010. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Alternative Medicine Review: A Journal of Clinical Therapeutic 15, 245263.Google Scholar
Kim, EJ, Kho, JH, Kang, MR, Um, SJ 2007. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Molecular Cell 28, 277290.Google Scholar
Kim, HS, Patel, K, Muldoon-Jacobs, K, Bisht, KS, Aykin-Burns, N, Pennington, JD, van der Meer, R, Nguyen, P, Savage, J, Owens, KM, Vassilopoulos, A, Ozden, O, Park, SH, Singh, KK, Abdulkadir, SA, Spitz, DR, Deng, CX, Gius, D 2010. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 4152.Google Scholar
Kong, XX, Wang, R, Liu, XJ, Zhu, LL, Shao, D, Chang, YS, Fang, FD 2009. Function of SIRT1 in physiology. Biochemistry 74, 703708.Google Scholar
Kong, X, Wang, R, Xue, Y, Liu, X, Zhang, H, Chen, Y, Fang, F, Chang, Y 2010. Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. Public Library of Science One 5, e11707.Google Scholar
Larkin, MA, Blackshields, G, Brown, NP, Chenna, R, Mc-Gettigan, PA, McWilliam, H, Valentin, F, Wallace, IM, Wilm, A, Lopez, R, Thompson, JD, Gibson, TJ, Higgins, DG 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 29472948.Google Scholar
Lawson, M, Uciechowska, U, Schemies, J, Rumpf, T, Jung, M, Sippl, W 2010. Inhibitors to understand molecular mechanisms of NAD(+)-dependent deacetylases (sirtuins). Biochimica et Biophysica Acta 1799, 726739.Google Scholar
Li, X, Kazgan, N 2011. Mammalian sirtuins and energy metabolism. International Journal of Biological Sciences 7, 575587.Google Scholar
Lin, SJ, Kaeberlein, M, Andalis, AA, Sturtz, LA, Defossez, PA, Culotta, VC, Fink, GR, Guarente, L 2002. Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418, 344348.Google Scholar
Liszt, G, Ford, E, Kurtev, M, Guarente, L 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. The Journal of Biological Chemistry 280, 2131321320.Google Scholar
Lombard, DB, Schwer, B, Alt, FW, Mostoslavsky, R 2008. SIRT6 in DNA repair, metabolism and ageing. Journal of Internal Medicine 263, 128141.Google Scholar
Mahlknecht, U, Ho, AD, Letzel, S, Voelter-Mahlknecht, S 2006. Assignment of the NAD-dependent deacetylase sirtuin 5 gene (SIRT5) to human chromosome band 6p23 by in situ hybridization. Cytogenetic and Genome Research 112, 208212.Google Scholar
Marchler-Bauer, A, Lu, S, Anderson, JB, Chitsaz, F, Derbyshire, MK, DeWeese-Scott, C, Fong, JH, Geer, LY, Geer, RC, Gonzales, NR, Gwadz, M, Hurwitz, DI, Jackson, JD, Ke, Z, Lanczycki, CJ, Lu, F, Marchler, GH, Mullokandov, M, Omelchenko, MV, Robertson, CL, Song, JS, Thanki, N, Yamashita, RA, Zhang, D, Zhang, N, Zheng, C, Bryant, SH 2011. CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Research 39, D225D229.Google Scholar
Marmorstein, R 2004. Structure and chemistry of the Sir2 family of NAD+-dependent histone/protein deacetylases. Biochemical Society Transactions 32, 904909.Google Scholar
McBurney, MW, Yang, X, Jardine, K, Hixon, M, Boekelheide, K, Webb, JR, Lansdorp, PM, Lemieux, M 2003. The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Molecular and Cellular Biology 23, 3854.Google Scholar
Michan, S, Sinclair, D 2007. Sirtuins in mammals: insights into their biological function. The Biochemical Journal 404, 113.Google Scholar
Michishita, E, Park, JY, Burneskis, JM, Barrett, JC, Horikawa, I 2005. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Molecular Biology of the Cell 16, 46234635.Google Scholar
Min, J, Landry, J, Sternglanz, R, Xu, RM 2001. Crystal structure of a SIR2 homolog-NAD complex. Cell 105, 269279.Google Scholar
Mostoslavsky, R, Chua, KF, Lombard, DB, Pang, WW, Fischer, MR, Gellon, L, Liu, P, Mostoslavsky, G, Franco, S, Murphy, MM, Mills, KD, Patel, P, Hsu, JT, Hong, AL, Ford, E, Cheng, HL, Kennedy, C, Nunez, N, Bronson, R, Frendewey, D, Auerbach, W, Valenzuela, D, Karow, M, Hottiger, MO, Hursting, S, Barrett, JC, Guarente, L, Mulligan, R, Demple, B, Yancopoulos, GD, Alt, FW 2006. Genomic instability, aging-like phenotype in the absence of mammalian SIRT6. Cell 124, 315329.Google Scholar
Motta, MC, Divecha, N, Lemieux, M, Kamel, C, Chen, D, Gu, W, Bultsma, Y, McBurney, M, Guarente, L 2004. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551563.Google Scholar
Moynihan, KA, Grimm, AA, Plueger, MM, Bernal-Mizrachi, E, Ford, E, Cras-Méneur, C, Permutt, MA, Imai, S 2005. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metabolism 2, 105117.Google Scholar
Nakagawa, T, Lomb, DJ, Haigis, MC, Guarente, L 2009. Sirt5 deacetylates carbamoyl phosphate synthetase 1, regulates the urea cycle. Cell 137, 560570.CrossRefGoogle ScholarPubMed
Nasrin, N, Wu, X, Fortier, E, Feng, Y, Bare, OC, Chen, S, Ren, X, Wu, Z, Streeper, RS, Bordone, L 2010. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. The Journal of Biological Chemistry 285, 3199532002.Google Scholar
Nedachi, T, Kadotani, A, Ariga, M, Katagiri, H, Kanzaki, M 2008. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. American Journal of Physiology. Endocrinology and Metabolism 294, E668E678.Google Scholar
Nemoto, S, Fergusson, MM, Finkel, T 2004. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 21052108.Google Scholar
North, BJ, Verdin, E 2004. Sirtuins: Sir2-related NAD-dependent protein deacetylases. Genome Biology 5, 224.1224.12.Google Scholar
North, BJ, Sinclair, DA 2007. Sirtuins: a conserved key unlocking AceCS Activity. Trends in Biochemical Sciences 32, 14.Google Scholar
Pagans, S, Pedal, A, North, BJ, Kaehlcke, K, Marshall, BL, Dorr, A, Hetzer-Egger, C, Henklein, P, Frye, R, McBurney, MW, Hruby, H, Jung, M, Verdin, E, Ott, M 2005. SIRT1 regulates HIV transcription via Tat deacetylation. Public Library of Science Biology 3, e41.Google Scholar
Palacios, OM, Carmona, JJ, Michan, S, Chen, KY, Manabe, Y, Ward, JL III, Goodyear, LJ, Tong, Q 2009. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle. Aging 1, 771783.Google Scholar
Pervaiz, S 2003. Resveratrol: from grapevines to mammalian biology. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 17, 19751985.Google Scholar
Picard, F, Kurtev, M, Chung, N, Topark-Ngarm, A, Senawong, T, Machado de Oliveira, R, Leid, M, McBurney, MW, Guarente, L 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771–776. Erratum in: Nature (2004) 430, 921.Google Scholar
Planavila, A, Iglesias, R, Giralt, M, Villarroya, F 2011. Sirt1 acts in association with PPARα to protect the heart from hypertrophy, metabolic dysregulation, and inflammation. Cardiovascular Research 90, 276284.Google Scholar
Qiang, L, Wang, H, Farmer, SR 2007. Adiponectin secretion is regulated by SIRT1 and the endoplasmic reticulum oxidoreductase Ero1-Lα. Molecular and Cellular Biology 27, 46984707.CrossRefGoogle Scholar
Qiao, L, Shao, J 2006. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex. The Journal of Biological Chemistry 281, 3991539924.CrossRefGoogle ScholarPubMed
Qiu, X, Brown, K, Hirschey, MD, Verdin, E, Chen, D 2010. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metabolism 12, 662667.Google Scholar
Rajendran, R, Garva, R, Krstic-Demonacos, M, Demonacos, C 2011. Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 368276, 17pp, 2011, doi:10.1155/2011/368276.Google Scholar
Rodgers, JT, Puigserver, P 2006. Certainly can't live without this: Sirt6. Cell Metabolism 3, 7778.Google Scholar
Rodgers, JT, Puigserver, P 2007. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proceedings of the National Academy of Sciences of the United States of America 104, 1286112866.Google Scholar
Rodgers, JT, Lerin, C, Haas, W, Gygi, SP, Spiegelman, BM, Puigserver, P 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113118.Google Scholar
Sakamoto, J, Miura, T, Shimamoto, K, Horio, Y 2004. Predominant expression of Sir2alpha, an NAD-dependent histone deacetylase, in the embryonic mouse heart and brain. Federation of European Biochemical Societies Letters 556, 281286.CrossRefGoogle ScholarPubMed
Sanders, BD, Jackson, B, Marmorstein, R 2010. Structural basis for sirtuin function: what we know and what we don't. Biochimica et Biophysica Acta 1804, 16041616.Google Scholar
Saunders, LR, Verdin, E 2007. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 54895504.CrossRefGoogle ScholarPubMed
Sauve, AA, Wolberger, C, Schramm, VL, Boeke, JD 2006. The biochemistry of sirtuins. Annual Review of Biochemistry 75, 435465.Google Scholar
Schlicker, C, Gertz, M, Papatheodorou, P, Kachholz, B, Becker, CFW, Steegborn, C 2008. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5. Journal of Molecular Biology 382, 790801.Google Scholar
Schuetz, A, Min, J, Antoshenko, T, Wang, CL, Allali-Hassani, A, Dong, A, Loppnau, P, Vedadi, M, Bochkarev, A, Sternglanz, R, Plotnikov, AN 2007. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin. Structure 15, 377389.Google Scholar
Schug, TT, Li, X 2011. Sirtuin 1 in lipid metabolism and obesity. Annals of Medicine 43, 198211.CrossRefGoogle ScholarPubMed
Schwer, B, Verdin, E 2008. Conserved metabolic regulatory functions of sirtuins. Cell Metabolism 7, 104112.CrossRefGoogle ScholarPubMed
Senawong, T, Peterson, VJ, Avram, D, Shepherd, DM, Frye, RA, Minucci, S, Leid, M 2003. Involvement of the histone deacetylase SIRT1 in chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2-mediated transcriptional repression. The Journal of Biological Chemistry 278, 4304143050.Google Scholar
Shan, T, Wang, Y, Wu, T, Liu, C, Guo, J, Zhang, Y, Liu, J, Xu, Z 2009. Porcine sirtuin 1 gene clone, expression pattern, and regulation by resveratrol. Journal of Animal Science 87, 895904.Google Scholar
Shan, T, Ren, Y, Liu, Y, Zhu, L, Wang, Y 2010. Breed difference and regulation of the porcine Sirtuin 1 by insulin. Journal of Animal Science 88, 39093917.Google Scholar
Sherman, JM, Stone, EM, Freeman-Cook, LL, Brachmann, CB, Boeke, JD, Pillus, L 1999. The conserved core of a human SIR2 homologue functions in yeast silencing. Molecular Biology of the Cell 10, 30453059.Google Scholar
Shi, T, Wang, F, Stieren, E, Tong, Q 2005. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. The Journal of Biological Chemistry 280, 1356013567.Google Scholar
Shi, T, Fan, GQ, Xiao, SD 2010. SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells. Journal of Digestive Diseases 11, 5562.Google Scholar
Shimazu, T, Hirschey, MD, Hua, L, Dittenhafer-Reed, KE, Schwer, B, Lombard, DB, Li, Y, Bunkenborg, J, Alt, FW, Denu, JM, Jacobson, MP, Verdin, E 2010. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production. Cell Metabolism 12, 654661.Google Scholar
Shoba, B, Lwin, ZM, Ling, LS, Bay, BH, Yip, GW, Kumar, SD 2009. Function of sirtuins in biological tissues. The Anatomical Record 292, 536543.Google Scholar
Shulga, N, Wilson-Smith, R, Pastorino, JG 2010. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. Journal of Cell Science 123, 894902.Google Scholar
Smith, JS, Caputo, E, Boeke, JD 1999. A genetic screen for ribosomal DNA silencing defects identifies multiple DNA replication and chromatin-modulating factors. Molecular and Cellular Biology 19, 31843197.Google Scholar
Smith, BC, Settles, B, Hallows, WC, Craven, MW, Denu, JM 2011. SIRT3 substrate specificity determined by peptide arrays and machine learning. American Chemical Society Chemical Biology 6, 146157.Google Scholar
Sugden, MC, Caton, PW, Holness, MJ 2010. PPAR control: it's SIRTainly as easy as PGC. The Journal of Endocrinology 204, 93104.Google Scholar
Sundaresan, NR, Samant, SA, Pillai, VB, Rajamohan, SB, Gupta, MP 2008. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Molecular and Cellular Biology 28, 63846401.Google Scholar
Sundaresan, NR, Gupta, M, Kim, G, Rajamohan, SB, Isbatan, A, Gupta, MP 2009. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. The Journal of Clinical Investigation 119, 27582771.Google Scholar
Tanner, KG, Landry, J, Sternglanz, R, Denu, JM 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proceedings of the National Academy of Sciences of the United States of America 97, 1417814182.Google Scholar
Tanny, JC, Moazed, D 2001. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product. Proceedings of the National Academy of Sciences of the United States of America 98, 415420.Google Scholar
Tao, R, Coleman, MC, Pennington, JD, Ozden, O, Park, SH, Jiang, H, Kim, HS, Flynn, CR, Hill, S, Hayes McDonald, W, Olivier, AK, Spitz, DR, Gius, D 2010. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Molecular Cell 40, 893904.Google Scholar
Taylor, DM, Maxwell, MM, Luthi-Carter, R, Kazantsev, AG 2008. Biological and potential therapeutic roles of sirtuin deacetylases. Cellular and Molecular Life Sciences 65, 40004018.Google Scholar
United Nations Organization Population Division 2011. World Population Prospects: The 2010 Revision. Press Release, New York, USA. Retrieved May 5, 2011, from http://esa.un.org/unpd/wpp/Other-Information/Press_Release_WPP2010.pdfGoogle Scholar
Villeneuve, L, Cinq-Mars, D, Lacasse, P 2010. Effects of restricted feeding of prepubertal ewe lambs on reproduction and lactation performances over two breeding seasons. Animal 4, 19972003.Google Scholar
Walford, RL, Harris, SB, Weindruch, R 1987. Dietary restriction and aging: historical phases, mechanisms and current directions. The Journal of Nutrition 117, 16501654.Google Scholar
Wang, F, Tong, Q 2009. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1's repressive interaction with PPARgamma. Molecular Biology of the Cell 20, 801808.CrossRefGoogle ScholarPubMed
Wang, F, Nguyen, M, Qin, FX, Tong, Q 2007. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 6, 505514.Google Scholar
Weber, TE, Trabue, SL, Ziemer, CJ, Kerr, BJ 2010. Evaluation of elevated dietary corn fiber from corn germ meal in growing female pigs. Journal of Animal Science 88, 192201.Google Scholar
Weindruch, R, Walford, RL, Fligiel, S, Guthrie, D 1986. The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. The Journal of Nutrition 116, 641654.Google Scholar
Wolf, G 2006. Calorie restriction increases life span: a molecular mechanism. Nutrition Reviews 64, 8992.Google Scholar
Yang, Y, Cimen, H, Han, MJ, Shi, T, Deng, JH, Koc, H, Palacios, OM, Montier, L, Bai, Y, Tong, Q, Koc, EC 2010. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10. The Journal of Biological Chemistry 285, 74177429.Google Scholar
Yeung, F, Hoberg, JE, Ramsey, CS, Keller, MD, Jones, DR, Frye, RA, Mayo, MW 2004. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. The European Molecular Biology Organization Journal 23, 23692380.Google Scholar
Yu, J, Auwerx, J 2009. The role of sirtuins in the control of metabolic homeostasis. Annals of the New York Academy of Sciences 1173, E10E19.Google Scholar
Zhong, L, D'Urso, A, Toiber, D, Sebastian, C, Henry, RE, Vadysirisack, DD, Guimaraes, A, Marinelli, B, Wikstrom, JD, Nir, T, Clish, CB, Vaitheesvaran, B, Iliopoulos, O, Kurland, I, Dor, Y, Weissleder, R, Shirihai, OS, Ellisen, LW, Espinosa, JM, Mostoslavsky, R 2010. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 140, 280293.Google Scholar
Supplementary material: Image

Ghinis-Hozumi supplementary material 1

Ghinis-Hozumi supplementary material 1

Download Ghinis-Hozumi supplementary material 1(Image)
Image 593.6 KB
Supplementary material: Image

Ghinis-Hozumi supplementary material 2

Ghinis-Hozumi supplementary material 2

Download Ghinis-Hozumi supplementary material 2(Image)
Image 3.7 MB