Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T07:26:30.784Z Has data issue: false hasContentIssue false

Phosphorus and calcium requirements for bone mineralisation of growing pigs predicted by mechanistic modelling

Published online by Cambridge University Press:  01 July 2020

M. Lautrou*
Affiliation:
Département des sciences animales, Université Laval, Québec, QC, G1V 0A6Canada Agriculture et Agroalimentaire Canada, Sherbrooke, QC, J1M 1Z3Canada UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, 75005Paris, France
C. Pomar
Affiliation:
Agriculture et Agroalimentaire Canada, Sherbrooke, QC, J1M 1Z3Canada
J.-Y. Dourmad
Affiliation:
PEGASE, Agrocampus Ouest, INRA, 35590Saint-Gilles, France
A. Narcy
Affiliation:
UMR Biologie des oiseaux et aviculture, INRA, 37380Nouzilly, France
P. Schmidely
Affiliation:
UMR Modélisation Systémique Appliquée aux Ruminants, INRA, AgroParisTech, Université Paris-Saclay, 75005Paris, France
M. P. Létourneau-Montminy
Affiliation:
Département des sciences animales, Université Laval, Québec, QC, G1V 0A6Canada
*
Get access

Abstract

Phosphorus (P) is an essential nutrient in livestock feed but can pollute waterways. In order for pig production to become less of a threat to the environment, excreta must contain as little P as possible or be efficiently used by plants. This must be achieved without decreasing the livestock performance. Phosphorus and calcium (Ca) deposition in the bones of growing pigs must be optimised without affecting the muscle gain. This requires precision feeding based on cutting-edge techniques of diet formulation throughout the animal growth phase. Modelling and data mining have become important tools in this quest. In this study, a mechanistic model taking into account the distribution of P between bone and soft tissues was compared to the established factorial models (INRA (Jondreville and Dourmad, 2005) and NRC (National Research Council, 2012)) that predict P (apparent total tract digestible, ATTD-P; or standardised total tract digestible, STTD-P) and Ca (total and STTD) requirements as a function of BW and protein deposition. The requirements for different bone mineralisation scenarios, namely, 100% and 85% of the genetic potential, were compared with these two models. Sobol indices were used to estimate the relative impact of growth-related parameters on mineral requirements at 30, 60 and 120 kg of BW. The INRA showed the highest value of ATTD-P requirement between 29 and 103 kg of BW (6%) and lower for lighter and higher BW. Similarly, the model for 85% bone mineralisation showed lower STTD-P requirement than NRC between 29 and 93 kg of BW (7%) and higher for lighter and higher BW. Contrary to other models, the Ca requirement of the proposed model is not fixed in relation to P. It increases from 95 kg of BW while the others decrease. The INRA showed the highest Ca requirements. The model Ca requirements for 100% bone mineralisation are higher than NRC from 20 to 38 kg of BW similar until 70 kg of BW and then higher again. For 85% objective, the model showed lower Ca requirements from 25 to 82 kg of BW and higher for lighter and higher BW. The potential Ca deposition in bones is the most sensitive parameter (84% to 100% of the variance) of both ATTD-P and Ca at 30, 60 and 120 kg. The second most sensitive parameter is the protein deposition, explaining 1% to 15% of the ATTD-P variance. Studies such as this one will help to usher in a new era of sustainable and eco-friendly livestock production.

Type
Research Article
Copyright
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Agriculture and Agri-Food Canada and The Author(s), 2020. Published by Cambridge University Press on behalf of The Animal Consortium

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andretta, I, Pomar, C, Rivest, J, Pomar, J, Lovatto, PA and Radünz Neto, J 2014. The impact of feeding growing–finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition. Journal of Animal Science 92, 39253936.CrossRefGoogle ScholarPubMed
Andretta, I, Pomar, C, Rivest, J, Pomar, J and Radünz, J 2016. Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal 10, 11371147.CrossRefGoogle ScholarPubMed
Bikker, P and Blok, MC 2017. Phosphorus and calcium requirements of growing pigs and sows. Wageningen Livestock Research (CVB documentation report 59), Wageningen, the Netherlands.CrossRefGoogle Scholar
Cherwell Scientific Ltd 2000. Modelmaker user manual. Cherwell Scientific Ltd, Oxford, England.Google Scholar
Couture, C, Chiasson, R, Pomar, C and Letourneau, M-P 2018. Évolution de la teneur en protéine corporelle et du contenu minéral osseux des porcs charcutiers nourris avec différents niveaux de phosphore et calcium alimentaires. Journées Recherche Porcine 50, 167168.Google Scholar
Crenshaw, TD 2001. Calcium, phosphorus, vitamin D, and vitamin K in swine nutrition. In Swine nutrition, 2nd edition (ed. Lewis, AJ and Southern, LL), pp. 187212. CRC Press, Boca Raton, FL, USA.CrossRefGoogle Scholar
Doeschl-Wilson, AB, Knap, PW and Kinghorm, BP 2006. Evaluating animal genotypes through model inversion. In Mechanistic modelling in pig and poultry production (ed. Gous, R, Morris, T and Fisher, C), pp. 163187. CABI, Trowbridge, UK.CrossRefGoogle Scholar
GfE 2008. Recommendations for the supply of energy and nutrients to pigs. DLG Verlag, Frankfurt am Main, Germany.Google Scholar
González-Vega, JC, Walk, CL, Liu, Y and Stein, HH 2014. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility. Archives of Animal Nutrition 68, 126142.CrossRefGoogle ScholarPubMed
González-Vega, JC, Walk, CL, Murphy, MR and Stein, HH 2016. Requirement for digestible calcium by 25 to 50 kg pigs at different dietary concentrations of phosphorus as indicated by growth performance, bone ash concentration, and calcium and phosphorus balances. Journal of Animal Science 94, 52725285.CrossRefGoogle ScholarPubMed
González-Vega, JC, Walk, CL and Stein, HH 2015a. Effects of microbial phytase on apparent and standardized total tract digestibility of calcium in calcium supplements fed to growing pigs. Journal of Animal Science 93, 22552264.CrossRefGoogle ScholarPubMed
González-Vega, JC, Walk, CL and Stein, HH 2015b. Effect of phytate, microbial phytase, fiber, and soybean oil on calculated values for apparent and standardized total tract digestibility of calcium and apparent total tract digestibility of phosphorus in fish meal fed to growing pigs. Journal of Animal Science 93, 4808.CrossRefGoogle ScholarPubMed
Gonzalo, E, Létourneau-Montminy, MP, Narcy, A, Bernier, JF and Pomar, C 2018. Consequences of dietary calcium and phosphorus depletion and repletion feeding sequences on growth performance and body composition of growing pigs. Animal 12, 11651173.CrossRefGoogle ScholarPubMed
Jondreville, C and Dourmad, JY 2005. Phosphorus in pig nutrition. Productions Animales 18, 183192.CrossRefGoogle Scholar
Jongbloed, AW, Diepen, JTM and van Kemme, PA 2003. Fosfornormen voor varkens: herziening 2003. (CVB-documentatierapport nr. 30).Google Scholar
Lagos, LV, Walk, CL, Murphy, MR and Stein, HH 2019. Effects of dietary digestible calcium on growth performance and bone ash concentration in 50- to 85-kg growing pigs fed diets with different concentrations of digestible phosphorus. Animal Feed Science and Technology 247, 262272.CrossRefGoogle Scholar
Langlois, J, Pomar, C and Létourneau-Montminy, M-P 2016a. Impact de déséquilibres phosphocalciques sur les performances zootechniques et la minéralisation osseuse chez le porc en finition. Journées Recherche Porcine 48, 109114.Google Scholar
Langlois, J, Pomar, C and Létourneau-Montminy, M-P 2016b. Estimation des besoins de phosphore et de calcium chez le porc de 25 à 50 kilogrammes de poids vif. Journées Recherche Porcine 48, 163164.Google Scholar
Lautrou, M, Pomar, C, Dourmad, J-Y and Létourneau-Montminy, M-P 2019a. Mechanistic model of metabolic use of dietary phosphorus and calcium and dynamics of body ash deposition in growing pigs: version 2.0. Advances in Animal Biosciences 10, 318.Google Scholar
Lautrou, M, Pomar, C, Dourmad, J-Y and Létourneau-Montminy, M-P 2019b. Modèle mécaniste de l’utilisation métabolique du phosphore et du calcium alimentaires et de la dynamique de dépôt des cendres corporelles: version 2.0. Journées Recherche Porcine 51, 135140.Google Scholar
Lee, SA, Lagos, VL and Stein, HH 2019. Grow-finish diet formulation. Retrieved on 28 February 2019 from https://www.nationalhogfarmer.com/nutrition/grow-finish-diet-formulationGoogle Scholar
Létourneau-Montminy, MP, Jondreville, C, Sauvant, D and Narcy, A 2012. Meta-analysis of phosphorus utilization by growing pigs: effect of dietary phosphorus, calcium and exogenous phytase. Animal 6, 15901600.CrossRefGoogle ScholarPubMed
Létourneau-Montminy, MP and Narcy, A 2013. Meta-analysis of the impact of dietary phosphorus, calcium, and microbial phytase on growth performance in pigs. In Poster Presented at the Annual Meeting of Midwest ASAS ADSAS, 10–13 March 2013, Des Moines, USA, P100.Google Scholar
Létourneau-Montminy, MP, Narcy, A, Dourmad, JY, Crenshaw, TD and Pomar, C 2015. Modeling the metabolic fate of dietary phosphorus and calcium and the dynamics of body ash content in growing pigs. Journal of Animal Science 93, 12001217.CrossRefGoogle ScholarPubMed
Merriman, LA and Stein, HH 2016. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs. Journal of Animal Science 94, 3844.CrossRefGoogle ScholarPubMed
Merriman, LA, Walk, CL, Murphy, MR, Parsons, CM and Stein, HH 2017. Inclusion of excess dietary calcium in diets for 100- to 130-kg growing pigs reduces feed intake and daily gain if dietary phosphorus is at or below the requirement. Journal of Animal Science 95, 54395446.CrossRefGoogle ScholarPubMed
Narcy, A, Létourneau-Montmy, MP, Bouzouagh, E, Même, N, Magn, M and Dourmard, JY 2012. Modulation de l’utilisation digestive du phosphore chez le porcelet sevré: Influence de l’apport de calcium et de phytase sur le pH et la solubilité des minéraux au niveau gastro-intestinal. Journées Recherche Porcine 44, 159164.Google Scholar
Nielsen, AJ 1973. Anatomical and chemical composition of Danish landrace pigs slaughtered at 90 kilograms live weight in relation to litter, sex and feed composition. Journal of Animal Science 36, 476483.CrossRefGoogle Scholar
National Research Council (NRC) 2012. Nutrient requirements of swine, 11th revised edition. National Academy Press, Washington, DC, USA.Google Scholar
Pomar, C, Jondreville, C, Dourmad, J and Bernier, J 2006. Influence du niveau de phosphore des aliments sur les performances zootechniques et la rétention corporelle de calcium, phosphore, potassium, sodium, magnésium, fer et zinc chez le porc de 20 à 100 kg de poids vif. Journées Recherche Porcine 38, 209216.Google Scholar
Pomar, C, Pomar, J, Rivest, J, Cloutier, L, Létourneau-Montminy, MP, Andretta, I and Hauschild, L 2015. Estimating real-time individual amino acid requirements in growing finishing pigs: towards a new definition of nutrient requirements in growing-finishing pigs? In: Nutritional modelling for pigs and poultry (ed. Sakomura, NK, Gous, RM, Kyriazakis, I and Hauschild, L), pp 157174. CAB International, Wallingford, UK.Google Scholar
Reinhart, GA and Mahan, DC 1986. Effect of various calcium:phosphorus ratios at low and high dietary phosphorus for starter, grower and finisher swine. Journal of Animal Science 63, 457466.10.2527/jas1986.632457xCrossRefGoogle Scholar
Remus, A, Methot, S, Hauschild, L and Pomar, C 2019. Sustainable precision livestock farming: calibrating the real-time estimation of daily protein gain in growing-finishing pigs. Manuscript submitted for publication.CrossRefGoogle Scholar
Sobol, IM 1993. Sensitivity analysis for nonlinear mathematical models. Mathematical Modelling Computational Experiments 1, 407414.Google Scholar
Stein, HH, Merriman, LA and González-Vega, JC 2016. Establishing a digestible calcium requirement for pigs. In Phytate destruction - consequences for precision animal nutrition (ed. Walk, CL, Kühn, I, Stein, HH, Kidd, MT and Rodehutscord, M), pp. 207216. Wageningen Academic Publishers, Wageningen, The Netherlands.CrossRefGoogle Scholar
Suttle, NF 2010. Mineral nutrition of livestock. 4th edition. Cabi, Wallingford, UK.CrossRefGoogle Scholar
U.S. Geological Survey 2019. Mineral commodity summaries 2019. U.S. Geological Survey, Reston, VA, USA.Google Scholar
Van Milgen, J, Valancogne, A, Dubois, S, Dourmad, J-Y, Sève, B and Noblet, J 2008. InraPorc: a model and decision support tool for the nutrition of growing pigs. Animal Feed Science and Technology 143, 387405.CrossRefGoogle Scholar
Vier, CM, Dritz, SS, Tokach, MD, DeRouchey, JM, Goodband, RD, Gonçalves, MAD, Orlando, UAD, Bergstrom, JR and Woodworth, JC 2019a. Calcium to phosphorus ratio requirement of 26- to 127- kg pigs fed diets with or without phytase. Journal of Animal Science 97, 40414052.CrossRefGoogle ScholarPubMed
Vier, CM, Dritz, SS, Wu, F, Tokach, MD, DeRouchey, JM, Goodband, RD, Gonçalves, MAD, Orlando, UAD, Chitakasempornkul, K and Woodworth, JC 2019b. Standardized total tract digestible phosphorus requirement of 24- to 130-kg pigs. Journal of Animal Science 97, 40234031.CrossRefGoogle Scholar
Whittemore, CT and Fawcett, RH 1976. Theoretical aspects of a flexible model to stimulate protein and lipid growth in pigs. Animal Science 22, 8796.CrossRefGoogle Scholar