Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-12T22:21:26.109Z Has data issue: false hasContentIssue false

The Norwegian sheep breeding scheme: description, genetic and phenotypic change

Published online by Cambridge University Press:  01 February 2008

L. S. Eikje*
Affiliation:
The Norwegian Association of Sheep and Goat Breeders, PO Box 2323, N-0201 Oslo, Norway Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
T. Ådnøy
Affiliation:
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
G. Klemetsdal
Affiliation:
Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, PO Box 5003, N-1432 Ås, Norway
Get access

Abstract

The developments in Norwegian sheep breeding since the early 1990s are reviewed. For the largest breeding population, the Norwegian White Sheep, results are presented for both genetic and phenotypic changes. Of the nine traits that make up the aggregate genotype, the largest gain per year, in per cent of the corresponding phenotypic average, was found for carcass grade (1.66%) and carcass weight (0.99%), number of lambs born at 1, 2 and 3 years of age (0.32% to 0.60%) and the maternal effect on weaning weight (0.26%). For fat grade, a genetic deterioration was estimated. This may be due to the too small weighting of this trait in the aggregate genotype and the true genetic parameters being somewhat different from the estimates in the prediction of breeding values. For lamb as well as ewe fleece weight, genetic change was close to zero – interpreted as mainly a correlated response to other traits in the aggregate genotype. Data for the two traits of fleece weight were, respectively, selected and few. Thus, phenotypic change was calculated for all traits except for fleece weight, and in addition for number of lambs at weaning, being indirectly selected for through number of lambs born. For all traits, with the exception of fat grade, advantageous phenotypic change was estimated. For weaning and carcass weight, the phenotypic change was less than the genetic change, while the opposite was observed for carcass and fat grade and number of lambs born. The latter traits can be more easily controlled by environmental actions, and the results thus exemplify the interdependency between environmental and genetic change.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ådnøy, T 1988. Selection for prolificacy in Finnsheep and Norwegian sheep. Journal of Agricultural Science Finland 60, 518522.Google Scholar
Asheim LJ and Mysterud I 1999. The Norwegian sheep farming production system. In Systems of sheep and goat production: organization of husbandry and role of extension services (ed. R Rubino and P Mohrand-Fehr), pp. 249–253.Google Scholar
Baker, RL, Steine, T 1986. Components of genetic variation for litter size and lamb survival in sheep. Proceedings of the third world congress on genetics applied to livestock production XI, 8489.Google Scholar
Colbjørnsen, EI 2002. Seminstatistikk sau 2001. Sau og Geit 55, 4446.Google Scholar
Eikje, ED 1973. Resultat frå avkomsgransking av texelverar. Sau og Geit 26, 119124.Google Scholar
Eikje, ED 1975a. Studies on sheep production records. Estimation of genetic change. Acta Agriculturæ Scandinavica 25, 253260.CrossRefGoogle Scholar
Eikje, ED 1975b. Studies on sheep production records. Genetic, phenotypic and environmental parameters for productivity traits of ewes. Acta Agriculturæ Scandinavica 25, 242252.CrossRefGoogle Scholar
Eikje ED 1976. Sauerasar. Forelesingsnotat. Institutt for husdyravl, Ås-NLH, 30 pp.Google Scholar
Eikje, ED 1977. Organization of sheep improvement in Norway. Proceedings of the New Zealand Society of Animal Production 37, 198205.Google Scholar
Eikje ED 1979. Kryssingsavl med sau. Forelesingsnotat. Institutt for husdyravl, Ås-NLH, 19 pp.Google Scholar
Eikje, ED, Steine, TA 1976. Realized genetic change in ewe productivity traits. Meldinger fra Norges Landbrukshøgskole 55, 12.Google Scholar
Fagsenteret for Kjøtt [Norwegian Meat Research Center] 2002. Årsmelding [Annual Report], Oslo, 2002, 35 pp.Google Scholar
Fimland, E, Eri, J, Liland, PJ, Gjedrem, T 1969. Resultat frå kryssingsforsøk med sau. Meldinger fra Norges Landbrukshøgskole 48, 35.Google Scholar
Gjedrem, T 1969. Some attempts to increase the efficiency of sheep selection. Acta Agriculturæ Scandinavica 19, 116126.CrossRefGoogle Scholar
Gjedrem T 1971. Saueavl. Forelesningar ved N.L.H, 126 pp.Google Scholar
Gjerde B 1979. Fødselsvanskar og lammedaude. Hovudoppgåve ved NLH, Institutt for Husdyravl, 109 pp.Google Scholar
Haugen OI, Vada G, Vabø P and Stensbye O 1968. Innstilling om avlsforsøk og avlstiltak i saueholdet. Norsk sau-og geitalslag, Oslo, 72 pp.Google Scholar
Hopp, P, Jarp, J 1998. Risikofaktorar for skrapesjuke. In Husdyrforsøksmøtet (ed. E Kaurstad), 1998. Institutt for Husdyrfag, NLH, Ås, pp. 196199.Google Scholar
Hopp, P, Ulvund, MJ, Jarp, J 2001. A case control study on scrapie in Norwegian sheep flocks. Preventive Veterinary Medicine 51, 183198.CrossRefGoogle ScholarPubMed
Johansen, J, Aastveit, AH, Egelandsdal, B, Kvaal, K, Røe, M 2006. Validation of the EUROP system for lamb classification in Norway; repeatability and accuracy of visual assessment and prediction of lamb carcass composition. Meat Science 74, 497509.CrossRefGoogle ScholarPubMed
Knutsen, G, Krogsrud, J, Mork, J, Jarp, J 2000. Resultater fra overvåkings- og kontrollprogrammet for mædi 97–98. In Husdyrforsøksmøtet 2000. Institutt for Husdyrfag, NLH, Ås, pp. 177180.Google Scholar
Kvame T 2005. Selection for slaughter quality in two genetic lines of sheep by the use of computer tomography. Dr Scientiarum Thesis. Department of Animal and Aquacultural Sciences. Norwegian University of Life Sciences, 143 pp.Google Scholar
Landbruksdepartementet [The Ministry of Agriculture and Food] 1995a. Forskrift om bekjempelse av dyresjukdommer av 06.03. 1995 nr. 237. Sist endret ved forskrift 12 august 1997.Google Scholar
Landbruksdepartementet [The Ministry of Agriculture and Food] 1995b. Forskrift om særlige tiltak for å hindre spredning av scrapie og mædi hos sau i fylkene Hordaland og Rogaland av 16.10.1995.Google Scholar
Landsrådet for Saueavl [The National Board of Sheep Breeding] 1992. Semin på sau. Sau og Geit 45, 235.Google Scholar
Landsrådet for Saueavl [The National Board of Sheep Breeding] 1993. Møte i Landsrådet for Saueavl, 9 December 1993, Norsk sau-og geitalslag, Oslo.Google Scholar
Landsrådet for Saueavl [The National Board of Sheep Breeding] 1995. Møte i Landsrådet for Saueavl, 1.juni 1995, Norsk sau-og geitalslag, Oslo.Google Scholar
Landsrådet for Saueavl [The National Board of Sheep Breeding] 1999. Påmelding til semin og opplegget rundt semingransking, Norsk sau-og geitalslag, Oslo, 2 pp.Google Scholar
Landsrådet for Saueavl [The National Board of Sheep Breeding] 2003. Regler for væreringer, Norsk sau-og geitalslag, Oslo, 5 pp.Google Scholar
Larsgard, AG, Kolstad, K 2003. Selection for ultrasonic muscle depth; direct and correlated response in a Norwegian experimental sheep flock. Small Ruminant Research 48, 2329.CrossRefGoogle Scholar
Larsgard, AG, Standal, N 1999. Introduction of East Friesian dairy sheep into the Norwegian sheep population. Small Ruminant Research 33, 8798.CrossRefGoogle Scholar
Mattilsynet [Norwegian Food Safety Authority] 2002. Forskrift om bekjempelse av dyresjukdommer av 27.06. 2002 nr. 732. Sist endret 08.03.2005.Google Scholar
Maurtvedt, A 1994. Texellamma på NLH. En sprek og livat gjeng. Sau og Geit 47, 164165.Google Scholar
Olesen, I, Husabø, JO 1994. Effect of using ultrasonic muscle depth and fat depth on accuracy of predicted phenotypic and genetic values of carcass traits on live ram lambs. Acta Agriculturæ Scandinavica 44, 6572.Google Scholar
Olesen, I, Steine, T 1988. Genetic change and utilization of artificial insemination in Norwegian sheep breeding. Proceedings of the Third World Congress on Sheep and Beef Cattle Breeding 2, 512520.Google Scholar
Olesen, I, Svendsen, M, Klemetsdal, G, Steine, TA 1995. Application of a multiple trait animal model for genetic evaluation of maternal and lamb traits in Norwegian sheep. Animal Science 60, 457469.CrossRefGoogle Scholar
Paulenz, H, Soderquist, L, Perez-Pe, R, Berg, KA 2001. Effect of different extenders and storage temperatures on sperm viability of liquid ram semen. Theriogenology 57, 823836.CrossRefGoogle Scholar
Paulenz, H, Ådnøy, T, Fossen, OH, Soderquist, L, Andersen Berg, K 2002. Effect of deposition site and sperm number on the fertility of sheep inseminated with liquid semen. Veterinary Record 150, 299302.CrossRefGoogle ScholarPubMed
Paulenz, H, Soderquist, L, Ådnøy, T, Fossen, OH, Andersen Berg, K 2003. Effect of milk- and TRIS-based extenders on the fertility of sheep inseminated vaginally once or twice with liquid semen. Theriogenology 60, 759766.CrossRefGoogle ScholarPubMed
Røyseland, J 2005. Islandsk spælsau – Erfaringer i Norge. Sau og Geit 58, 2021.Google Scholar
Statistical Analysis Systems Institute 1999. SAS Technical Report p-229. SAS/STAT software: changes and enhancements, release 6.07. SAS Institute Inc., Cary, NC, USA.Google Scholar
Statens landbruksforvaltning [Norwegian Agricultural Authority] 2000. Produksjonstilskudd i jordbruket.Google Scholar
Statistisk sentralbyrå [Statistics, Norway] 2001. Jorbruksstatistikk 1999, 122 pp.Google Scholar
Statistisk sentralbyrå [Statistics, Norway] 2003. Jordbruksstatistikk 2001, 127 pp.Google Scholar
Steine, T 1982a. Fifteen years experience with a co-operative sheep breeding scheme in Norway. Proceedings of the First World Congress on Sheep and Beef Cattle Breeding 2, 145148.Google Scholar
Steine, T 1982b. Oversikt over avlsarbeidet med sau. In Husdyrforsøksmøtet 1982. Institutt for husdyrfag, NLH, Ås, pp. 265270.Google Scholar
Steine, T 1986. Skilnader mellom distrikt i avlsarbeidet med sau. In Husdyrforsøksmøtet 1986. Institutt for husdyrfag, NLH, Ås, pp. 395399.Google Scholar
Steine, TA, Våbenø, AW, Bekken, A, Eikje, ED 1978. Resultat frå kryssingsforsøk med finsk landrase. Meldinger fra Norges Landbrukshøgskole 57, 21.Google Scholar
Steinheim, G, Mysterud, A, Holand, O, Bakken, M, Ådnøy, T 2002. The effect of initial weight of the ewe on later reproductive effort in domestic sheep (Ovis aries). Journal of Zoology 258, 515520.CrossRefGoogle Scholar
Svendsen, M, Olesen, I, Sangholt, G 1996. Slakteegenskaper hos lam – genetiske parametre. In Husdyrforsøksmøtet 1996. Institutt for husdyrfag, NLH, Ås, pp. 370373.Google Scholar
Våbenø, AW, Bekken, A, Eri, J, Gjedrem, T 1974. Resultater fra krysning mellom finsk landrase og norsk saueraser. Meldinger fra Norges Landbrukshøgskole 53, 23.Google Scholar
Vangen O, Kvame T, Haugen S, Avdem F and Eikje S 2003. Use of a meat sheep sire line to improve product quality in a national sheep breeding system. 54th Annual Meeting of the European Association for Animal Production. Session V of the Commission on Sheep and Goat Production, 7 pp.Google Scholar