Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-06T03:23:44.277Z Has data issue: false hasContentIssue false

Metabolisable energy partition for Japanese quails

Published online by Cambridge University Press:  29 June 2020

E. P. Silva*
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
D. M. C. Castiblanco
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
S. M. B. Artoni
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
M. B. Lima
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
H. S. Nogueira
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
N. K. Sakomura
Affiliation:
Department of Animal Sciences, Universidade Estadual Paulista, College of Agriculture and Veterinary Sciences, Via de Acesso Professor Paulo Donato Castelane s/n, 14883-900, Jaboticabal, SP, Brazil
*
Get access

Abstract

Knowing how energy intake is partitioned between maintenance, growth and egg production (EP) of birds makes it possible to structure models and recommend energy intakes based on differences in the BW, weight gain (WG) and EP on commercial quail farms. This research was a dose-response study to re-evaluate the energy partition for Japanese quails in the EP phase, based on the dilution technique to modify the retained energy (RE) of the birds. A total of 300 VICAMI® Japanese quail, housed in climatic chambers, were used from 16 weeks of age, with averages for BW of 185 g and EP of 78%, for 10 weeks. To modify the RE in the bird’s body, a qualitative dilution of dietary energy was used. Ten treatments (metabolisable energy levels) were distributed in completely randomised units, with six replicates of five quails per experimental unit. Metabolisable energy intake (MEI), egg mass (EM) and RE were expressed in kJ/kg0.67. The utilisation efficiency (kt) was estimated from the relationship between RE and MEI. The metabolisable energy for maintenance was given by RE = 0. The net energy requirement for WG was obtained from the relationship between RE in the BW as a function of the BW. The utilisation efficiency for EP (ko) was obtained from the relationship between EM and RE corrected MEI for maintenance and WG. Based on these efficiencies, the requirements for WG and EM were calculated. The energy intake by Japanese quails was partitioned according to the model: MEI = 569.8 × BW0.67 + 22 × WG + 13 × EM. The current study provides procedures and methods designed for quails as well as a simple and flexible model that can be quickly adopted by technicians and poultry companies.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Animal Consortium

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Present address: Poultry Science Laboratory, Lavinesp, Via de Acesso Professor Paulo Donato Castelane s/n 14883-900, Jaboticabal, SP, Brazil.

References

Agboola, AF, Omidiwura, BRO, Ologbosere, DY and Iyayi, EA 2016. Determination of crude protein and metabolisable energy of japanese quail (Coturnix coturnix japonica) during laying period. Journal of World’s Poultry Research 6, 131138.Google Scholar
Association of Official Analytical Chemists (AOAC) 2004. Official methods of analysis, volume 2, 18th edition. AOAC, Arlington, VA, USA.Google Scholar
Barreto, SLT, Quirino, BJS, Brito, CO, Umigi, RT, Araujo, MS, Coimbra, JSR, Rojas, EEG, Freitas, JF and Reis, RS 2007a. Níveis de energia metabolizável para codornas japonesas na fase inicial de postura. Revista Brasileira de Zootecnia 36, 7985.CrossRefGoogle Scholar
Barreto, SLT, Quirino, BJS, Brito, CO, Brito, CO, Umigi, RT, Araujo, MS, Rocha, TC and Pereira, CG 2007b. Efeitos de níveis nutricionais de energia sobre o desempenho e qualidade de ovos de codornas européias na fase inicial de postura. Revista Brasileira de Zootecnia 36, 8693.CrossRefGoogle Scholar
Begin, JJ 1968. A comparison of the ability of the Japanese quail and light breed chicken to metabolizable and utilize energy. Poultry Science 47, 12781281.CrossRefGoogle Scholar
Belo, MTS, Cotta, JTB and Oliveira, AIG 2000. Níveis de energia metabolizável em rações de codornas japonesas (Coturnix coturnix japonica) na fase inicial de postura. Ciência e Agrotecnologia 24, 782793.Google Scholar
IBGE – Instituto Brasileiro de Geografia e Estatística, Ministério do Planejamento, Orçamento e Gestão, Brasil 2006. Retrieved on 10 January 2019 from http://www.ibge.gov.br.Google Scholar
Chwalibog, A 1992. Factorial estimation of energy requirements for egg production. Poultry Science 71, 509515.CrossRefGoogle ScholarPubMed
Dodds, PS, Rothman, DH and Weitz, JS 2001. Re-examination of the “3/4-law”: of Metabolism. Journal of Theoretical Biology 209, 927.CrossRefGoogle Scholar
Emmans, GC 1994. Effective energy: a concept of energy utilization applied across species. British Journal of Nutrition 71, 801821.CrossRefGoogle ScholarPubMed
Fisher, C, Morris, TR and Jennings, RC 1973. A model for the description and prediction of the response of laying hens to amino acid intake. British Poultry Science 14, 469484.CrossRefGoogle Scholar
Freeman, BM 1967. Oxygen consumption by the Japanese quail Coturnix coturnix japonica. British Poultry Science 8, 147152.CrossRefGoogle Scholar
Freitas, AC, Fuentes, MFF, Freitas, ER, Sucupira, FS and Oliveira, BCM 2005. Efeito de níveis de proteína bruta e de energia metabolizável sobre o desempenho de codornas de postura. Revista Brasileira de Zootecnia 34, 838846.CrossRefGoogle Scholar
Hurtado, NVL, Torres, NDM and Castro, RAS 2014. Efecto de los niveles de energía metabolizable y proteína sobre el desempeño zootécnico de codornices en postura. Ciencia y Agricultura 11, 916.CrossRefGoogle Scholar
Hurtado, NVL, Torres, NDM and Daza, GMF 2015. Efectos de la proteína bruta y energía metabolizable sobre la calidad del huevo de codorniz. Orinoquia 19, 195202.CrossRefGoogle Scholar
Jordão Filho, J, Silva, JHV, Costa, FGP, Kazue, NK, Silva, CT and Chagas, NA 2011. Prediction equations to estimate the demand of energy and crude protein for maintenance, gain and egg production for laying Japanese quails. Revista Brasileira de Zootecnia 40, 24232430.CrossRefGoogle Scholar
Lopes, IRV, Fuentes, MFF and Freitas, ER 2006. Efeito da densidade de alojamento e do nível de energia metabolizável da ração sobre o desempenho zootécnico e características dos ovos de codornas japonesas. Revista Ciência Agronômica 37, 369375.Google Scholar
Luiting, P 1990. Genetic variation of energy partitioning in laying hens: causes of variation in residual feed consumption. World’s Poultry Science Journal 46, 133152.CrossRefGoogle Scholar
Minvielle, F 2004. The future of Japanese quail for research and production. World’s Poultry Science Journal 60, 500507.CrossRefGoogle Scholar
Moura, GS, Barreto, SLT, Donzele, JL, Hosoda, LR, Pena, GM and Angelini, MS 2008. Dietas de diferentes densidades energéticas mantendo constante a relação energia metabolizável: nutrientes para codornas japonesas em postura. Revista Brasileira de Zootecnia 37, 16281633.CrossRefGoogle Scholar
Pinto, R, Ferreira, AS, Albino, LFT, Gomes, PC and Vargas Júnior, JG 2002. Níveis de proteína e energia para codornas japonesas em postura. Revista Brasileira de Zootecnia 32, 17611770.CrossRefGoogle Scholar
Rabello, CBV, Sakomura, NK, Longo, FA, Couto, HP, Paheco, CR and Fernandes, JBK 2006. Modelling energy utilisation in broiler breeder hens. British Poultry Science 47, 622631.CrossRefGoogle ScholarPubMed
Rivera-Torres, V, Noblet, J, Dubois, S and van Milgen, J 2010. Energy partitioning in male growing turkeys. Poultry Science 89, 530538.CrossRefGoogle ScholarPubMed
Sakomura, NK 2004. Modeling energy utilization in broiler breeders, laying hens and broilers. Brazilian Journal of Poultry Science 6, 111.CrossRefGoogle Scholar
Sakomura, NK and Rostagno, HS 2016. Métodos de Pesquisa em Nutrição de Monogástricos, 2nd revised edition. FUNEP, Jaboticabal, SP, Brazil.Google Scholar
Silva, EP, Castiblanco, DMC, Artoni, SMB, Lima, MB, Nogueira, HS and Sakomura, NK 2019. Metabolizable energy partition for japanese quails. Advances in Animal Biosciences 10, 336.Google Scholar
Silva, EP, Malheiros, EB, Sakomura, NK, Venturini, KS, Hauschild, L, Dorigam, JCP and Fernandes, JBK 2015a. Lysine requirements of laying hens. Livestock Science 173, 6977.CrossRefGoogle Scholar
Silva, EP, Sakomura, NK, Hauschild, L and Gous, RM 2015b. Modelo de Reading para estimar a ingestão ótima econômica de aminoácidos para aves. Ciência Rural 45, 450457.CrossRefGoogle Scholar
Silva, JHV and Costa, FGP 2009. Tabela para codornas japonesas e européias, 2th revised edition, FUNEP, Jaboticabal, São Paulo, Brazil.Google Scholar
Silva Júnior, PR 2015. Codorna - efeito ambiental e nutricional para aumento da produtividade. In Proceedings of the 13th Congresso APA de Produção e Comercialização de Ovos, 17–19 March 2015, Ribeirão Preto, Brazil, pp. 1–6.Google Scholar
St-Pierre, NR 2003. Reassessment of biases in predicted nitrogen flows to the duodenum by NRC 2001. Journal of Dairy Science 86, 344350.CrossRefGoogle ScholarPubMed
Zancanela, V, Marcato, SM, Furlan, AC, Grieser, DO, Ton, APS, Batista, E, Perine, TP, Del Vesco, AP and Pozza, PC 2015. Models for predicting energy requirements in meat quail. Livestock Science 171, 1219.CrossRefGoogle Scholar