Implications
Piglet mortality fuels critical discussions regarding animal welfare concerns. Furthermore, the number of weaned piglets per sow determines the economic success of piglet production. Robustness and a well-performing immune system are a prerequisite for piglet survivability, which is determined by the complex relationships between direct and maternal genetic effects, common litter and management driven environmental effects. This review aims to summarize mechanisms and relationships between immunity, robustness and piglet vitality.
Introduction
General implications
The number of weaned piglets per sow is the main determiner of the profitability of piglet production. Therefore, breeding organizations have focussed on the genetic improvement of litter size, leading to a substantial increase of the number of piglets born alive (NBA). It is well known that increasing NBA leads to lower birth weights and increased piglet mortality (e.g. Knol, Reference Knol2001). Piglet mortality has a negative impact on animal welfare, public acceptance and decreases the subsequent viability of pig performance (Rutherford et al., Reference Rutherford, Baxter, D’Eath, Turner, Arnott, Roehe, Ask, Sandoe, Moustsen, Thorup, Edwards, Berg and Lawrence2013). However, the causes of piglet mortality are diverse and often interact with each other. Besides birth weight, the immune system also has a strong impact on pig performance, but parameters of immune response and general health have seldom been considered on a large scale in modern breeding programmes so far (Clapperton et al., Reference Clapperton, Glass and Bishop2008). However, animals should have low medication needs, whilst meeting consumer protection requirements. This situation was intensified by an extensive use of antimicrobials in livestock production causing resistances and consequences for human health (Merks et al., Reference Merks, Mathur and Knol2012). The customer expects farm animals to be kept under ethologically optimized animal welfare standards, requiring robust livestock needing little management effort and resistant to disease (Kanis et al., Reference Kanis, van den Belt, Groen, Schakel and Greef2004; Merks et al., Reference Merks, Mathur and Knol2012).
The basic relationships of the immune system, robustness and resilience, survival and vitality of piglets were recently studied as well as reviewed in a comprehensive manner (e.g. Edwards and Baxter, Reference Edwards and Baxter2015; Colditz and Hine, Reference Colditz and Hine2016). Until now, a common consideration of these three complexes has not been performed. Therefore, we aim to focus on the relationship between pig immunity and robustness as well as the possibilities of implementing these traits in breeding programmes to improve piglet survivability.
Immune system
The immune system is a highly interactive system composed of integrated, genetically and environmentally regulated sets of cells and molecules. Classically, immunity itself is separated in two pillars, innate and adaptive host defence mechanisms (Tizard, Reference Tizard2013).
The innate immune response is the first line of defence and provides an effective protection. This system is involved in first detection, recognition, killing and delivery of antigens to the next lymphoid tissue and enables the pig to respond rapidly to an infectious agent (Chase and Lunney, Reference Chase and Lunney2012). It consists of physical barriers, phagocytic cells and the production of various mediators with the task to protect, recruit cells through an inflammatory process and activate the adaptive immune system (Tizard, Reference Tizard2013). However, these defence mechanisms are not antigen -specific (Chase and Lunney, Reference Chase and Lunney2012).
The adaptive immune system is antigen-specific. It consists of an immunological memory and takes about 2 to 3 weeks to operate properly after birth and antigen exposure. Mounting an immune response takes longer at first antigen exposure compared to the following encounters with the same antigen. This can result in protection (e.g. vaccination) even if there is no prevailing burden by antigens (Chase and Lunney, Reference Chase and Lunney2012).
Influences on the immune system
Blood performs a wide variety of tasks in the body, including the transport of nutrients, hormones and neurotransmitters, as well as protection against infections (Watson, Reference Watson2015). The easiest way to get a first insight into the state of the immune system is to analyse the differential blood count (Zhang et al., Reference Zhang, Zhang, Yan, Chen, Zhang, Hong and Huang2014). However, the evaluation of blood values should always be considered in connection to the respective environment, because the variation in host response to pathogens and diseases are influenced through genotype by environmental (G×E) interactions (Mallard and Wilkie, Reference Mallard and Wilkie2007; Rashidi et al., Reference Rashidi, Mulder, Mathur, van Arendonk and Knol2014). This means that animals with advantageous immune phenotypes according to their blood values, should express those in a broad range of environments and not only in the environment they are selected in (Mallard and Wilkie, Reference Mallard and Wilkie2007). In this context, it is important to understand the immune response during various life conditions and phases including stress, infection pressure, changing environmental effects, parturition, postpartum, growth and development (Henryon et al., Reference Henryon, Heegaard, Nielsen, Berg and Juul-Madsen2006). For example, Schalm et al. (Reference Schalm, Jain and Caroll1975) and Seutter (Reference Seutter1995) established relevant blood values for various pig production cycles, but an actualization for modern pig populations and environments is needed. The crucial factors influencing the differential blood count are psychological and physical stress, even during blood collection, as well as sex. Furthermore, species differences in the composition of blood have been known for a while (Schalm et al., Reference Schalm, Jain and Caroll1975), but breed-specific differences have only been considered recently (e.g. Seutter, Reference Seutter1995; Henryon et al., Reference Henryon, Heegaard, Nielsen, Berg and Juul-Madsen2006). Going forward, this should be studied intensively with current breeds, crossbreeds as well as with current and changing housing conditions.
In recent years, various authors (Clapperton et al., Reference Clapperton, Diack, Matika, Glass, Gladney, Mellencamp, Hoste and Bishop2009; Flori et al., Reference Flori, Gao, Laloë, Lemonnier, Leplat, Teillaud, Cossalter, Laffitte, Pinton, Vaureix, de, Bouffaud, Mercat, Lefèvre, Oswald, Bidanel and Rogel-Gaillard2011) have reported on the porcine immune system, giving us a deeper understanding of the reticulation of the immune system. The question ‘What is a good immune system?’ is not answered completely. To answer this question and achieve breeding progress, detailed insights into the immune system of pigs during their developmental stages are necessary.
Immunocompetence
The immunocompetence of a host is determined by the sum of tolerance and resistance (Rauw, Reference Rauw2012). In livestock, tolerance is described as the ability of an individual to limit the impact of a given pathogen burden on performance (Mulder and Rashidi, Reference Mulder and Rashidi2017). Resistance, however, is characterized by the ability of an individual to reduce the probability of infection or growth of the pathogen by limiting the pathogen burden within itself (Hermesch, Reference Hermesch2014). Based on the definition by Knap (Reference Knap2005), robustness was defined by Colditz and Hine (Reference Colditz and Hine2016), as the consistency of the phenotype of an animal independent of the persistent characteristics of the environment it is kept in. Resilience, however, was defined as the ‘capacity of the animal to return rapidly to its pre-challenge state following short-term exposure to a challenging situation’ (Colditz and Hine, Reference Colditz and Hine2016).
Tolerance and resistance can be abstracted mathematically using reaction norm models (e.g. Raberg et al., Reference Raberg, Graham and Read2009) describing the dynamics of these traits regarding host health and infection intensity (Rauw, Reference Rauw2012). The gap between promising genotypes and their effective performance due to an insufficient provision of resources can be described as unfavourable G×E interactions (Knap, Reference Knap2005). Thereby, reaction norm models quantify G×E interactions by ranking the sensitivity of an individual towards its environment. Tolerance is defined by Simms (Reference Simms2000) as the regression of the relationship between fitness and infection intensity or by Raberg et al. (Reference Raberg, Graham and Read2009) as ‘the rate of change in fitness as parasite burden increases’. Resistance is typically defined as the amount of pathogens in a host or as the inverse of infection intensity (Raberg et al., Reference Raberg, Graham and Read2009).
Generally, tolerance, resistance and resilience are characterized by the need for (re)allocation of resources (Rauw, Reference Rauw2012). According to the allocation theory, an individual possesses a set of resources which are limited and have to be invested amongst the systemic functional areas (Friggens et al., Reference Friggens, Blanc, Berry and Puillet2017). These include growth, metabolism, reproduction, maintenance, retention of energy and nutrition for future use. In this zero-sum system, each unit of resource is only directed to one function, resulting in trade-offs between these systemic functions (Rauw, Reference Rauw2012; Friggens et al., Reference Friggens, Blanc, Berry and Puillet2017). If an immune response is activated, the transformation rate of energy and nutrients is expected to be considerably increased. These resources are then needed and allocated to the immune system; conversely, these mechanisms also work vice versa (Guy et al., Reference Guy, Thomson and Hermesch2012; Rauw, Reference Rauw2012). If an individual passes through life conditions and phases (e.g. extensive growth, reproduction), nutrients and energy are allocated to those somatic functions and immune responses are decreased due to limited physiological resources (Rauw, Reference Rauw2012). It cannot be totally dismissed, that in the situation of a specific immune reaction, deficiencies in, for example, growth and reproduction performance appear. These ‘costs’ for the organism are determined by the environment, the availability of needed resources, and the host’s genotype; however, they cannot be assessed completely (Colditz, Reference Colditz2009).
Evaluation of tolerance, resistance and resilience
Guy et al. (Reference Guy, Thomson and Hermesch2012) indicated the importance of analysing the immune response critically before attempting to measure tolerance and resistance. Thus, tolerance has to be measured under different environments to detect the fitness of an individual facing various stressors (Friggens et al., Reference Friggens, Blanc, Berry and Puillet2017), which makes phenotyping very difficult and detailed (Wilkie and Mallard, Reference Wilkie and Mallard1999; Doeschl-Wilson et al., Reference Doeschl-Wilson, Villanueva and Kyriazakis2012). The same effort has to be applied to characterize resistance, because it requires quantifying the pathogen load in the individual under a given pathogen challenge (Kause, Reference Kause2011). However, Mulder and Rashidi (Reference Mulder and Rashidi2017) reported that selecting for resilience via performance measures only is an efficient way to improve disease resistance and tolerance sparing the need to evaluate the pathogen burden. However, the authors found the selection responses to be higher if the pathogen challenge is recorded (Mulder and Rashidi, Reference Mulder and Rashidi2017).
Piglet vitality and survival
Piglet vitality is the ‘ability of a piglet to survive based on its survival at birth and till weaning’ (Merks et al., Reference Merks, Mathur and Knol2012). Vitality and survival traits are influenced by additive genetic (e.g. behaviour, vigour, immunity), maternal genetic (e.g. behaviour, milk quality and quantity, uterus quality) (Figure 1), common litter (e.g. litter size) and various environmental effects (e.g. temperature, stress and difficulties during farrowing, help with colostrum intake) which are difficult to disentangle mathematically (Knol, Reference Knol2001; Roehe et al., Reference Roehe, Shrestha, Mekkawy, Baxter, Knap, Smurthwaite, Jarvis, Lawrence and Edwards2010).
In Germany, the current piglet pre-weaning mortality rate is 14.87% (erzeugerring.info, 2018). The proportion of pre-weaning losses, however, remained stable, whereas the NBA kept increasing (erzeugerring.info, 2018). This development confirms that breeding for important production traits and larger litters resulted in higher amounts of piglet losses caused by an increased risk for less developed piglets and low individual birth weights (e.g. Edwards, Reference Edwards2002; Grandinson et al., Reference Grandinson, Lund, Rydhmer and Strandberg2002; Alonso-Spilsbury et al., Reference Alonso-Spilsbury, Ramirez-Necoechea, Gonzalez-Lozano, Mota-Rojas and Trujillo-Ortega2007; Hellbrügge et al., Reference Hellbrügge, Tölle, Bennewitz, Henze, Presuhn and Krieter2008; Fix, Reference Fix2010; Baxter et al., Reference Baxter, Rutherford, D’Eath, Arnott, Turner, Sandøe, Moustsen, Thorup, Edwards and Lawrence2013; Rutherford et al., Reference Rutherford, Baxter, D’Eath, Turner, Arnott, Roehe, Ask, Sandoe, Moustsen, Thorup, Edwards, Berg and Lawrence2013). The rivalry in large litters starts in utero, resulting in within- litter variation of birth weights (Rutherford et al., Reference Rutherford, Baxter, D’Eath, Turner, Arnott, Roehe, Ask, Sandoe, Moustsen, Thorup, Edwards, Berg and Lawrence2013) and continues post -farrowing if the number of piglets born exceeds the number of functional teats on the sow (Rootwelt et al., Reference Rootwelt, Reksen, Farstad and Framstad2013).
The main causes for piglet losses are stillbirth, crushing by the sow and starvation and can still be consistently found in literature (Dyck and Swiersta, Reference Dyck and Swiersta1987; Edwards, Reference Edwards2002; Edwards and Baxter, Reference Edwards and Baxter2015). However, these causes were discussed to be effectively the result of low vitality and therefore part of a cascade initiated by poor vigour on the one hand (Edwards and Baxter, Reference Edwards and Baxter2015) and missing mothering abilities on the other (Grandinson et al., Reference Grandinson, Lund, Rydhmer and Strandberg2002). Dyck and Swiersta (Reference Dyck and Swiersta1987) concluded that the main cause for a piglet loss is inadequate colostrum and milk intake in the 1st days of life. The complex interactions between genetic prerequisites and the environment make it difficult to determine a single reason or rather the real cause for a loss between conception and weaning (Edwards, Reference Edwards2002; Grandinson et al., Reference Grandinson, Lund, Rydhmer and Strandberg2002).
Birth weight was described to be the main factor influencing piglet survival (Roehe and Kalm, Reference Roehe and Kalm2000) and to be a suitable substitute trait to breed for increased piglet survivability due to its higher heritability (Grandinson et al., Reference Grandinson, Lund, Rydhmer and Strandberg2002; Roehe et al., Reference Roehe, Shrestha, Mekkawy, Baxter, Knap, Smurthwaite, Jarvis, Lawrence and Edwards2010). The increase in litter size did not only enhance the risk of lower individual birth weight, but also for a decreased uniformity of birth weights within litters (e.g. Knol, Reference Knol2001). Piglets with a low birth weight and viability at birth show a slower growth and compromised carcass quality (Knol, Reference Knol2001; Fix, Reference Fix2010). However, breeding for higher birth weights does not solve the problem single-handedly (Knol, Reference Knol2001). Heavy piglets prolong the farrowing process for themselves as well as for the following littermates resulting in an increased risk of asphyxia (Grandinson et al., Reference Grandinson, Lund, Rydhmer and Strandberg2002; Trujillo-Ortega et al., Reference Trujillo-Ortega, Mota-Rojas, Olmos-Hernández, Alonso-Spilsbury, González, Orozco, Ramírez-Necoechea and Nava-Ocampo2007). This non-linear relationship between birth weight and stillbirth was also described by, for example, Roehe and Kalm (Reference Roehe and Kalm2000).
Baxter et al. (Reference Baxter, Jarvis, D’Eath, Ross, Robson, Farish, Nevison, Lawrence and Edwards2008) found stillborn piglets were disproportionately long and thin compared to their live born littermates. The authors concluded that not only the body mass index but also the ponderal index (PI) would be reasonable indicators of piglet loss. Fay et al. (Reference Fay, Dey, Saadie, Buhl and Gebski1991) studied human infants and found that the PI is a more reliable indicator for intrauterine growth problems than the birth weight. The PI additionally includes the cubed crown-to-rump length of the piglet (Baxter et al., Reference Baxter, Jarvis, D’Eath, Ross, Robson, Farish, Nevison, Lawrence and Edwards2008) and reflects the change in relative weight for length during gestation (Gluckman and Hanson, Reference Gluckman and Hanson2005). van der Lende and de Jager (Reference van der Lende and de Jager1991) and Rootwelt et al. (Reference Rootwelt, Reksen, Farstad and Framstad2013) showed that a threshold of 1 kg for postpartum survival is needed. Piglets with a birth weight lower than 1 kg have an increased mortality risk, independent of their status in the within-litter variation in birth weight (van der Lende and de Jager, Reference van der Lende and de Jager1991). Low birth weight piglets are less vital, with decreased colostrum intake, a lack of immunoglobulins and a higher risk of pre-weaning mortality due to missing energy reserves, causing hypothermia, crushing and starvation-related deaths (Edwards, Reference Edwards2002). Their resilience to disease, development and future weight gain is decreased whilst the impact of postnatal environmental factors is increased (Edwards, Reference Edwards2002; Le Dividich et al., Reference Le Dividich, Rooke and Herpin2005; Fix, Reference Fix2010).
Relationship between immunity and piglet survival
The primary immune response of the piglet needs 7 to 10 days to develop (Chase and Lunney, Reference Chase and Lunney2012). It is well known that piglet survivability and performance of the immune system are associated via colostrum intake. Newborn piglets are characterized by a lack of immunoglobulins, due to the missing antibody supply from the placenta (Chase and Lunney, Reference Chase and Lunney2012) and missing energy reserves (Theil et al., Reference Theil, Lauridsen and Quesnel2014). Piglets are immediately exposed to microorganisms and pathogens, resulting in a complex microbial flora on its surfaces and in its gastrointestinal tract within hours postpartum. The intestinal microflora is crucial for the development of the immune system. Antibodies are concentrated in the colostrum in the last days of gestation and transferred intact via the gut of the piglet. The intestinal absorption of immunoglobulins from colostrum decreases after 1 to 4 days postpartum. Generally, the concentration of colostrum components changes substantially and rapidly after birth (Theil et al., Reference Theil, Lauridsen and Quesnel2014). The provision of colostrum is crucial for the piglet’s survival, its thermoregulation and growth after birth (Le Dividich et al., Reference Le Dividich, Rooke and Herpin2005). Reasons for reduced colostrum intake lie, for example, in the vitality of the piglet, the competition at the udder and the quantity of colostrum produced by the sow (Tizard, Reference Tizard2013). Le Dividich et al. (Reference Le Dividich, Charneca and Thomas2017) showed that the level of passive immunity acquired through colostrum determines the level of systemic immunity at weaning. Further, they found that piglets with a lower birth weight who survived, needed more colostrum than their heavier littermates. The colostrum production of the sow was independent of litter size and weight. Generally, the birth order was not associated with colostrum intake but with lower immunoglobulin G concentrations in piglets that were born later (Le Dividich et al., Reference Le Dividich, Charneca and Thomas2017).
Genetic aspects of piglet survival and immunity
Immunity
Phenotypes representing the immune system usually include subtypes of leukocytes, as well as T/B lymphocytes (Mangino et al., Reference Mangino, Roederer, Beddall, Nestle and Spector2017). To select pigs for improved health, suitable traits have to be heritable and preferably associated with enhanced performance (Clapperton et al., Reference Clapperton, Glass and Bishop2008). The homeostatic control of the various cell types within the immune system are under genetic and environmental control to a varying extent (Mangino et al., Reference Mangino, Roederer, Beddall, Nestle and Spector2017). Mangino et al. (Reference Mangino, Roederer, Beddall, Nestle and Spector2017) estimated variance components and heritabilities (h 2) in human twins and found that adaptive immune traits are more influenced by genetics, whereas innate immune traits underlie a higher environmental influence.
Table 1 shows a reasonable genetic foundation for most immune parameters from quantitative genetic studies in pigs. Estimations of h 2 are highly variable between the studies. These different results could be caused by the number of animals (~200 to 4000), breed and line analysed (Clapperton et al., Reference Clapperton, Bishop and Glass2005) as well as the age or life phase of the animals phenotyped. The fact that challenge studies were conducted (on-farm health status, vaccination reactions, targeted infection) could cause differences in h 2. Furthermore, the statistical models used as well as the fixed effects considered (e.g. weight, age, farm, breed) influence h 2 estimations. These characteristics make it difficult to compare the findings due to diverse study approaches. For a meaningful estimation of h 2 and genetic correlations (r g), large numbers of phenotyped animals are needed. However, this prerequisite is difficult to realize because taking blood samples is time consuming and the analysis relatively expensive. Furthermore, the impact of the immune system of the sow on the colostrum supply for the piglets and the development of the respective piglets remains uncertain.
The relationships between the innate and adaptive immune response were estimated by Flori et al. (Reference Flori, Gao, Laloë, Lemonnier, Leplat, Teillaud, Cossalter, Laffitte, Pinton, Vaureix, de, Bouffaud, Mercat, Lefèvre, Oswald, Bidanel and Rogel-Gaillard2011) and demonstrated the complementarity of innate and adaptive immunity. However, the analyses did not provide any clusters of immune parameters or significant correlations between cell subsets (Flori et al., Reference Flori, Gao, Laloë, Lemonnier, Leplat, Teillaud, Cossalter, Laffitte, Pinton, Vaureix, de, Bouffaud, Mercat, Lefèvre, Oswald, Bidanel and Rogel-Gaillard2011). The relationships between innate and adaptive immunity were described by Seutter (Reference Seutter1995) with the help of the haematological traits neutrophil and lymphocyte concentration. Neutrophil concentrations are expected to have an antagonistic relationship to lymphocyte concentrations, because of the activation of the adaptive immune response (Tizard, Reference Tizard2013). However, this relationship can also be determined by the challenges or the state of development the pig is experiencing. Seutter (Reference Seutter1995) described that sows show a neutrophil dominated blood count after farrowing due to the physical strain of birth. In contrast, piglets express a blood count dominated by lymphocytes indicating that their immune system is responding to their new environment.
To our knowledge, only Clapperton et al. (Reference Clapperton, Glass and Bishop2008 and Reference Clapperton, Diack, Matika, Glass, Gladney, Mellencamp, Hoste and Bishop2009) investigated the relationships between immune parameters and growth performance. The authors found negative correlations between some of the investigated leukocyte blood cells and daily gain and also estimated negative genetic correlations between CD11R1+ cells and average daily gain under lower health status. Against this background, we can postulate that a major knowledge gap exists about the genetic impact of the porcine immune system, especially with regards to performance traits and piglet survivability. Furthermore, no studies were conducted to investigate the complex interactions between the dam and her litter or maternal genetic effects (Figure 1). The immune system of the dam could affect phenotypes expressing maternal genetic effects like colostrum quality and quantity as well as uterus and birth conditions. This, however, would influence the ability of the piglet to survive pre- and post-farrowing. The maternal effects are possibly decreasing with time, whilst the challenges for the direct genetic effects are increasing until weaning. Besides, the immune system of the piglet affects phenotypes such as vitality, robustness as well as growth and therefore the overall survivability of the piglet. In summary, there is a lack of knowledge about how the various parts of the immune system influence the genetic potential of the piglet to survive and the ability of the sow to rear her litter.
Piglet survival
Piglet survival can be recorded as survival at farrowing as well as pre-weaning survival at the piglet or sow level (Roehe and Kalm, Reference Roehe and Kalm2000; Hellbrügge et al., Reference Hellbrügge, Tölle, Bennewitz, Henze, Presuhn and Krieter2008). The individual birth weight or weight traits at the litter level were discussed to be suitable substitution traits. At the piglet level, direct genetic effects can be described as the genetic potential of piglet survival (Roehe et al., Reference Roehe, Shrestha and Mekkawy2009). As mentioned above, the genetic capability of the dam to rear piglets is included in the maternal genetic effects (Knol et al., Reference Knol, Leenhouwers and van der Lende2002; Roehe et al., Reference Roehe, Shrestha and Mekkawy2009).
Quantitative genetic studies of piglet survival traits (Table 2) at the sow or piglet level showed mostly low h 2 and considerable environmental influence (e.g. farm management). Heritabilities for the individual birth weight are usually marginally higher at the piglet level. Maternal genetic effects are of a similar magnitude as h 2 for piglet survival traits and higher for individual birth weight. Traits like mean birth weight per litter showed moderate h 2.
h t 2=total heritability; h d 2=direct heritability; h m 2=maternal heritability.
1 Damgaard et al. (Reference Damgaard, Rydhmer, Lovendahl and Grandinson2003).
2 Canario et al. (Reference Canario, Cantoni, Le Bihan, Caritez, Billon, Bidanel and Foulley2006).
3 Hellbrügge et al. (Reference Hellbrügge, Tölle, Bennewitz, Henze, Presuhn and Krieter2008).
4 Arango et al. (Reference Arango, Misztal, Tsuruta, Culbertson, Holl and Herring2006) (4aModel 3, 4bModel 1).
5 Kapell et al. (Reference Kapell, Ashworth, Knap and Roehe2011).
Genetic correlations between individual survival traits and individual birth weights showed contradictory results. Various studies found negative correlations, indicating that low birth weight is associated with higher numbers of stillborn piglets (e.g. Arango et al., Reference Arango, Misztal, Tsuruta, Culbertson, Holl and Herring2006; Roehe et al., Reference Roehe, Shrestha, Mekkawy, Baxter, Knap, Smurthwaite, Jarvis, Lawrence and Edwards2010). However, Grandinson et al. (Reference Grandinson, Lund, Rydhmer and Strandberg2002) found a positive r g. Canario et al. (Reference Canario, Cantoni, Le Bihan, Caritez, Billon, Bidanel and Foulley2006) as well as Mulder et al. (Reference Mulder, Hill and Knol2015) confirmed the hypothesis that these traits exhibit a quadratic relationship. This indicates that an ideal birth weight exists (Mulder et al., Reference Mulder, Hill and Knol2015). However, the correlation between pre-weaning survival and individual birth weight was distinctly negative whenever studied (e.g. Arango et al., Reference Arango, Misztal, Tsuruta, Culbertson, Holl and Herring2006; Roehe et al., Reference Roehe, Shrestha, Mekkawy, Baxter, Knap, Smurthwaite, Jarvis, Lawrence and Edwards2010). Therefore, piglets with higher individual birth weights have a higher probability of survival until weaning.
At the sow level, larger litters show higher mortality rates before weaning (Damgaard et al., Reference Damgaard, Rydhmer, Lovendahl and Grandinson2003; Hellbrügge et al., Reference Hellbrügge, Tölle, Bennewitz, Henze, Presuhn and Krieter2008). Unfavourable correlations between the mean within-litter birth weight and litter size were found by Kapell et al. (Reference Kapell, Ashworth, Knap and Roehe2011). Damgaard et al. (Reference Damgaard, Rydhmer, Lovendahl and Grandinson2003) and Sell-Kubiak et al. (Reference Sell-Kubiak, Wang, Knol and Mulder2015b) reported that the within-litter variation of birth weights is under genetic control. However, Sell-Kubiak et al. (Reference Sell-Kubiak, Wang, Knol and Mulder2015b) stress that this trait should be included into a selection index to limit the decreasing impact on the individual birth weight when the selection focusses on reduced within-litter variance. In rabbits and mice, Blasco et al. (Reference Blasco, Martínez-Álvaro, García, Ibáñez-Escriche and Argente2017) and Gutiérrez et al. (Reference Gutiérrez, Nieto, Piqueras, Ibáñez and Salgado2006), concluded that although the within-litter trait variation showed low h 2, a genetic foundation exists and consequently selection for a reduced phenotypic variability is possible.
The estimation of direct and maternal genetic effects is difficult, because the quantity and quality of recorded phenotypes is limited. Modelling the litter effect (modelled as the id of the dam and parity) often hampers convergence because there is a considerable drop in observations after first parity caused by selection. Generally, the litter effect represents the same influences for the piglets in a litter (e.g. litter size, uniformity). However, imbalances in parity classes bias the estimations of these effects. The application of cross-fostering complicates the genetic evaluation further, due to the uncertainty whether or not the biological dam or the foster dam actually determines breeding values (Jonas and Rydhmer, Reference Jonas and Rydhmer2018).
Quantitative trait loci, linkage studies and candidate genes
The application of single nucleotide polymorphism (SNP) information in genome-wide association studies (GWAS) give important information on quantitative trait loci (QTL), elucidating the genetic background of the traits of interest (Knol et al., Reference Knol, Nielsen and Knap2016). PigQTLdb (Hu et al., Reference Hu, Park and Reecy2016) shows the current state of research of identified QTL. Genome-wide association studies for domestic animals largely focussed on economically important growth and production factors such as fertility, meat quality and susceptibility to specific infections (e.g. Boddicker et al., Reference Boddicker, Waide, Rowland, Lunney, Garrick, Reecy and Dekkers2012; Onteru et al., Reference Onteru, Fan, Du, Garrick, Stalder and Rothschild2012). A search of the recent publications in this field shows that the amount of genomic analyses of immune and robustness traits increased in the last decade (Supplementary Table S1).
Immunity
Few publications focussing on immunity deal with haematological traits to unravel the genetic mechanism and architecture of immune traits in swine (e.g. Lu et al., Reference Lu, Liu, Gong, Wang, Liu and Zhang2011; Ponsuksili et al., Reference Ponsuksili, Reyer, Trakooljul, Murani and Wimmers2016) (Supplementary Table S1). Lu et al. (Reference Lu, Liu, Gong, Wang, Liu and Zhang2011) found promising QTL regions and candidate genes for T lymphocyte subpopulations, parts of innate immunity and interleukins. Ponsuksili et al. (Reference Ponsuksili, Reyer, Trakooljul, Murani and Wimmers2016) reported 24 overlapping QTL regions resulting from a single-marker and a Bayesian multi-marker approach applied to 12 haematological traits. The authors found potential candidate genes that influence the physiology of cells and the haemopoietic system. Interestingly, Rohrer et al. (Reference Rohrer, Rempel, Miles, Keele, Wiedmann and Vallet2014) measured the colostrum intake of 5312 piglets via the amount of immunocrit in serum and detected 7 QTL for the ability of the piglet to ingest and absorb γ-immunoglobulins. The study revealed promising candidate genes that control appetite and growth. However, no QTL were found associated with the passive transfer of immunity.
The study designs show clear differences in breed and number of animals as well as specific immune challenges limiting the comparability and applicability of the results. Targeted immune stimulation is not always feasible and necessary in order to get a comprehensive overview of the immune system (Hermesch and Luxford, Reference Hermesch and Luxford2018). It is a challenge to determine the genetic architecture of immunocompetence because haematological traits are complex and influenced by multiple genes. This was confirmed by Lu et al. (Reference Lu, Liu, Gong, Wang, Liu and Zhang2011) who indicated that the genes controlling traits related to immunity in pigs act in tight linkage and tend to cluster in the same chromosomal regions or the same genes having pleiotropic effects.
Piglet survival
Traits associated with piglet survivability as well as birth weight have rarely been investigated using GWAS approaches, as mainly litter traits were analysed. This may be due to the high effort associated with extensive genotyping as well as the phenotyping of hard to measure traits like stillbirth and birth weight on individual piglet level (Knap, Reference Knap2014; Knol et al., Reference Knol, Nielsen and Knap2016).
Genome-wide association studies on traits related to piglet survival (Supplementary Table S2) were conducted for, for example, the number of stillborn piglets (e.g. Onteru et al., Reference Onteru, Fan, Du, Garrick, Stalder and Rothschild2012; Schneider et al., Reference Schneider, Rempel, Snelling, Wiedmann, Nonneman and Rohrer2012), the number of mummies (Onteru et al., Reference Onteru, Fan, Du, Garrick, Stalder and Rothschild2012; Schneider et al., Reference Schneider, Rempel, Snelling, Wiedmann, Nonneman and Rohrer2012) and litter size at day 5 (LS5) (Guo et al., Reference Guo, Su, Christensen, Janss and Lund2016). Schneider et al. (Reference Schneider, Rempel, Snelling, Wiedmann, Nonneman and Rohrer2012) and Wang et al. (Reference Wang, Ding, Tan, Xing, Yang, Pan, Mi, Sun and Wang2018) conducted GWAS for the average birth weight, whereas Wang et al. (Reference Wang, Ding, Tan, Ning, Xing, Yang, Pan, Sun and Wang2017) analysed piglet uniformity or birth weight variability. Furthermore, Sell-Kubiak et al. (Reference Sell-Kubiak, Duijvesteijn, Lopes, Janss, Knol, Bijma and Mulder2015a) reported novel QTL for litter size and its variability in Large White. The results of the mentioned studies above ranged from 1 to 65 associations comprising breed-specific QTL and revealed overlapping QTL or SNPs between traits that are associated with candidate genes known to be responsible for reproductive performance (e.g. placental quality) or physical development (e.g. embryonic development). Jonas and Rydhmer (Reference Jonas and Rydhmer2018) recently published a candidate gene analysis on, for example, the number of stillborn piglets and the average birth weight to analyse whether genes for maternal ability are potential markers to select for increased piglet survival.
The various results for purebred lines (e.g. Jonas and Rydhmer, Reference Jonas and Rydhmer2018; Wang et al., Reference Wang, Ding, Tan, Xing, Yang, Pan, Mi, Sun and Wang2018) under investigation showed that birth weight on a litter basis seems to be under polygenetic control, whereas various peaks were observed by survival traits. However, Schneider et al. (Reference Schneider, Rempel, Snelling, Wiedmann, Nonneman and Rohrer2012) found no QTL for the number of stillborn and the number of mummified, but most putative QTL regions were found for the average birth weights in crossbred pigs. Investigations in dam lines revealed partly overlapping QTL (Guo et al., Reference Guo, Su, Christensen, Janss and Lund2016). Furthermore, results for genetic associations apparently depend on the parity number, indicating temporal gene effects in different parities (Onteru et al., Reference Onteru, Fan, Du, Garrick, Stalder and Rothschild2012; Wang et al., Reference Wang, Ding, Tan, Ning, Xing, Yang, Pan, Sun and Wang2017; Jonas and Rydhmer, Reference Jonas and Rydhmer2018). To achieve sufficient statistical power for such poorly heritable traits, large numbers of animals have to be recorded, especially for stillbirth and pre-weaning loss which show low incident rates (Knol et al., Reference Knol, Nielsen and Knap2016).
Breeding strategies
Pig breeding programmes classically apply selection indexes based on estimated breeding values and the marginal economic value of each trait using multivariate BLUP models (Knap, Reference Knap2014). The use of genotypic information in the form of SNP and applying various statistical methods revolutionized the potential of breeding value information concerning improved reliabilities as well as reduced generation intervals (Knol et al., Reference Knol, Nielsen and Knap2016). The superiority of applying genotypic information into pig breeding programmes (genomic BLUP) has also been reported (e.g. Guo et al., Reference Guo, Christensen, Ostersen, Wang, Lund and Su2015).
Selection of robust individuals is important because animal welfare concerns can be reduced, whereas the profitability of pig production is increased. The potential implementation of immune and piglet survival traits in a breeding goal for improved robustness is of particular interest and performance tests for selection candidates have to be conceptualized, accordingly. However, various authors (e.g. Onteru et al., Reference Onteru, Fan, Du, Garrick, Stalder and Rothschild2012; Schneider et al., Reference Schneider, Rempel, Snelling, Wiedmann, Nonneman and Rohrer2012; Guo et al., Reference Guo, Su, Christensen, Janss and Lund2016) stress the importance of substantial reference populations to estimate genomic breeding values and the importance of clean phenotyping of the traits of interest.
Breeding for piglet survival was applied in several breeding programmes using different approaches in northern Europe. However, most breeding strategies focussed on the inclusion of litter traits and not individual piglet survival. In Denmark, for example, the trait LS5 was introduced (Nielsen et al., Reference Nielsen, Su, Lund and Madsen2013). Norwegian and Swedish pig breeders included the NBA and the litter weight at week 3 (Rydhmer, Reference Rydhmer2005). In the Netherlands, however, it was discussed to tackle this trait complex by including individual piglet survival into the selection index even though it has a low h 2 (Knol et al., Reference Knol, Leenhouwers and van der Lende2002). The advantages of selecting for higher birth weights were regarded critically (Knol et al., Reference Knol, Leenhouwers and van der Lende2002). Roehe et al. (Reference Roehe, Shrestha and Mekkawy2009 and Reference Roehe, Shrestha, Mekkawy, Baxter, Knap, Smurthwaite, Jarvis, Lawrence and Edwards2010) investigated genetic parameters for survival traits in a crossbreeding experiment under outdoor conditions. Sires were selected according to their direct and maternal genetic effects on postnatal piglet survival and a considerable potential to improve individual piglet survival was found. Sell-Kubiak et al. (Reference Sell-Kubiak, Wang, Knol and Mulder2015b) reported promising results for selecting for reduced within-litter variation of birth weights using pedigree and genomic information. Although, phenotypes for piglet survival are labour intensive to record, it has to be recognized that these traits have a high value, especially for breeding organizations (Knap, Reference Knap2014).
Piglets require a well-performing innate immune response directly after birth and sufficient colostrum supply is crucial, especially for weak and small piglets directly after birth. The piglet has no energy resources or adaptive immunity after farrowing. Hence, the quality of the dam’s immune system and its influence on the immunity of the respective offspring are of particular interest (Collins, Reference Collins2014). Especially, the crucial immune reactions for survivability and robustness have to be studied and specified, preferably under different environments. Furthermore, the question if the colostrum quality and production of the sow or the vitality of the piglet is primarily responsible for an increased colostrum intake must be answered. Important traits of the sow like teat number, farrowing behaviour and mothering abilities should be considered in a selection index as well, especially if the focus in the breeding goal lies on litter size (Rydhmer, Reference Rydhmer2000).
Immunocompetence, characterized by specific immune parameters, has not been included in any selection index or breeding value yet. Selection for health traits is mainly concentrated on conformation scores and/or specific disease resistances (e.g. Escherichia coli) (Rydhmer, Reference Rydhmer2005). As described above, limited studies exist on determining the genetic variability of immune traits and the genomic background of the key players in immunity. It is difficult to determine one or two immune parameters to be reasonable traits for incorporation into a breeding programme for improved robustness and survivability.
Challenge studies helped to improve pre-weaning survival in the offspring of boars, which were selected for higher cell-mediated immune response post-vaccination (Harper et al., Reference Harper, Bunter, C Hine, Hermesch and M Collins2018). Mallard et al. (Reference Mallard, Wilkie, Kennedy and Quinton1992) selected pigs with high and low immune response to study the performance and immune response of the animals post challenge (e.g. Magnusson et al., Reference Magnusson, Wilkie, Mallard, Rosendal and Kennedy1998; Wilkie and Mallard, Reference Wilkie and Mallard1999). Stear et al. (Reference Stear, Bishop, Mallard and Raadsma2001) concluded that breeding for a specific immune response does result in higher susceptibility for other diseases.
Promising genetic resistance against the porcine reproductive and respiratory syndrome (PRRS) was reviewed by Reiner (Reference Reiner2016) and Dekkers et al. (Reference Dekkers, Rowland, Lunney and Plastow2017). However, Dekkers et al. (Reference Dekkers, Rowland, Lunney and Plastow2017) stress that due to the variability of PRRS a resistance is not feasible, but a reduced susceptibility is. Furthermore, the need for a closer inspection of the complete function of potential candidate genes (e.g. receptors) was emphasized by Reiner (Reference Reiner2016). This was confirmed by Popescu et al. (Reference Popescu, Gaudreault, Whitworth, Murgia, Nietfeld, Mileham, Samuel, Wells, Prather and Rowland2017) who reported that genetically edited pigs lacking the virus receptor CD163 for African swine fever died post virus infection.
In order to characterize and breed for immunocompetence, specific immune responses towards challenges are not suitable as a basis for selection decisions. Otherwise, selection for a specific immune response cannot be calibrated without challenging the pigs immune system (Hermesch, Reference Hermesch2014). Hence, what is crucially missing is the identification of traits or trait complexes to breed for improved immunity.
Breeding goals for immunocompetence and health traits changed in their specificity (tolerance, resistance, robustness and resilience), definitions, context and requirements over the last two decades (Kanis et al., Reference Kanis, van den Belt, Groen, Schakel and Greef2004; Hermesch, Reference Hermesch2014). Robust pigs should achieve high performance under all possible and even in non-optimized housing conditions and challenge situations (Knap, Reference Knap2005). Accordingly, Knap (Reference Knap2009) defined sustainable breeding and increasing robustness as selection for animals combining a high production potential with resilience to external stressors (psychological, physical or microbial). Studies on resilience focussed on immunity, performance (Wilkie and Mallard, Reference Wilkie and Mallard1999; Mulder and Rashidi, Reference Mulder and Rashidi2017), animal behaviour (Kanis et al., Reference Kanis, van den Belt, Groen, Schakel and Greef2004) and stress reactions on endocrinological levels (e.g. Mormede and Terenina, Reference Mormede and Terenina2012). In this context, the increased uniformity of livestock as well as G×E interactions (Mulder, Reference Mulder2016) are often discussed with the help of conceptual frameworks (e.g. the thermoregulation model in Kanis et al., Reference Kanis, van den Belt, Groen, Schakel and Greef2004) to discuss if the traits of interest can be translated into an applicable breeding goal (Hermesch, Reference Hermesch2014).
Nevertheless, breeding for disease resistance can be seen critically. If resistance towards specific pathogens and viruses is established, the question arises whether or not this leads to breeding animals less flexible to different environmental conditions. Guy et al. (Reference Guy, Thomson and Hermesch2012) and Flori et al. (Reference Flori, Gao, Laloë, Lemonnier, Leplat, Teillaud, Cossalter, Laffitte, Pinton, Vaureix, de, Bouffaud, Mercat, Lefèvre, Oswald, Bidanel and Rogel-Gaillard2011) discussed that selection for response to a specific pathogen may result in unpredictable responses to other pathogens. Therefore, Guy et al. (Reference Guy, Thomson and Hermesch2012) recommend a careful evaluation of selection traits and criteria with regards to their consequences, before their incorporation into a breeding programme. Mulder et al. (Reference Mulder, Hill and Knol2015) described trade-offs between the flexibility of an animal to react to various environmental challenges on the one hand, and a lowered plasticity, resulting in high performance, on the other. This was already shown by a higher prevalence of reproductive and health-related problems in livestock under non-optimized production premises (Knap and Su, Reference Knap and Su2008). Therefore, breeding for tolerance would be more beneficial to increasing robustness if it increases the genetic variability of pigs to react to environmental challenges without harming the limited variability of pig performance accepted by the following actors of the value chain.
Concerning the improvement of piglet survivability, the role of immunocompetence needs to be further investigated. Whether the immune reaction must be high or low to be vital and resilient is not defined yet. It is not clear if an optimized immune response is a substitute for piglet survival or could be included into a selection index for improved survivability. Moreover, the economic value of immunocompetence is intricate to evaluate.
Conclusion
The use of hyperprolific dam lines successfully increased the NBA in the last decades. However, piglet mortality rates remain constant, decreasing the profitability of piglet production. Furthermore, the growing critical attitude of the consumer resulted in increasing animal welfare concerns. The intensification of animal production included increased hygiene standards and application of antibiotics for disease prevention. Moreover, selection for enhanced productivity resulted in potential trade-offs in robustness especially in challenging environments according to the allocation theory. Consequently, breeding for improved immunocompetence and robustness is a major priority in pig breeding.
The immune system of pigs, survivability and robustness of piglets are intricate trait complexes of increasing priority for successful pig production. Moreover, all three trait complexes are involved with each other. The analysis of immune traits for an evaluation of a generally enhanced immune response is promising to gain improved survivability and robustness. This stresses the need to investigate the relationship between survivability, robustness and immune parameters extensively.
In addition, appropriate immune parameters or networks that favour an improved immunocompetence are neither identified nor evaluated considering their mode and direction of effectiveness. Even current reference values for the characterization of the pig populations are missing. Furthermore, the determination of these trait complexes is expensive and elaborate. Hence, on-farm phenotyping is difficult to realize as a routine. Available quantitative genetic and genomic studies on general immunocompetence in pigs are difficult to compare due to massive differences between study designs. Especially for the selection for genotypes with improved immunocompetence G×E interactions must be considered, because offspring from animals selected in high hygiene environments might not perform as expected in challenging environments. Therefore, fundamental research and characterization of the relationships between the immune parameters, networks causing immunocompetence, robustness, survivability and performance is needed.
Acknowledgements
This review is based on an invited presentation at the 68th Annual Meeting of the European Association for Animal Production held in Tallinn, Estonia, August 2017. Esther Heuß is funded by the ‘pigFit’ project which is supported by funds of German Government’s Special Purpose Fund held at Landwirtschaftliche Rentenbank (FKZ28-RZ-3-72.038). The authors want to thank our project partners Dr Hubert Henne and Dr Anne Appel at Bundeshybridzuchtprogramm (BHZP GmbH) for providing their support. Furthermore, the authors thank Klemens Schulz at the Bundesverband Rind und Schwein e.V. (BRS e.V.) for providing important information on German pig production. In conclusion, many thanks to Katharina Roth and Christina Dauben for their huge support regarding table and figure design within this review as well as Mikhael Poirier and Dennis Miskel for their linguistic revision.
Declaration of interest
There is no potential conflicts of interest.
Ethics statement
None.
Software and data repository resources
None.
Supplementary material
To view supplementary material for this article, please visit https://doi.org/10.1017/S1751731119000430