Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-29T05:20:21.311Z Has data issue: false hasContentIssue false

Influence of pig rearing system on animal performance and manure composition

Published online by Cambridge University Press:  01 April 2009

J. Y. Dourmad*
Affiliation:
INRA, UMR1079 Systèmes d’Elevage Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
M. Hassouna
Affiliation:
INRA, UMR1069 Sol – Agronomie – Spatialisation, F-35042 Rennes cedex, France
P. Robin
Affiliation:
INRA, UMR1069 Sol – Agronomie – Spatialisation, F-35042 Rennes cedex, France
N. Guingand
Affiliation:
IFIP-Institut du Porc, F-35651 Le Rheu cedex, France
M. C. Meunier-Salaün
Affiliation:
INRA, UMR1079 Systèmes d’Elevage Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
B. Lebret
Affiliation:
INRA, UMR1079 Systèmes d’Elevage Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
Get access

Abstract

A total of 200 crossbred pigs (castrated males and females) were used in five replicates to evaluate the influence of rearing conditions for fattening pigs on growth performance, manure production and gaseous emissions. Approximately at 36 kg body weight (BW), littermates were allocated to either a conventional (fully slatted floor, 0.65 m2/pig, considered as control, CON) or an alternative (sawdust bedding, 1.3 m2/pig, with free access to an outdoor area 1.1 m2/pig, OUT) system, until slaughter at approximately 115 kg BW. Pigs had free access to standard growing and finishing diets. Manure was stored as slurry below the slatted floor in the CON system and as litter, for the inside area, or slurry and liquid, for the outside area, in the OUT system. The amount and composition of manure were determined at the end of each replicate. Ammonia emission from the rooms was measured continuously. Dust and odour concentrations were measured in replicates 1 and 2, and CH4, N2O and CO2 emissions were measured in replicate 3. Compared with the CON, the OUT pigs exhibited a faster growth rate (+8%, P < 0.001) due to their greater feed intake (+0.21 kg/day, P < 0.01), resulting in a heavier BW (+7.3 kg, P < 0.001) and a lower lean meat content (−1.6% points, P < 0.001) at slaughter. The total amount of manure produced per pig was similar in both systems (380 kg/pig), but because of the contribution of sawdust, dry matter (DM) content was higher (P < 0.001) and concentrations in N, P, K, Cu and Zn in DM were lower (P < 0.001) in manure from the OUT than from the CON system. In the OUT system, most of the manure DM (70%) was collected indoor, corresponding mostly to the contribution of the sawdust, and most of the manure water (70%) was collected outdoor. Pigs excreted indoor about 60% and 40% of urine and faeces, respectively. Ammonia emission from the room was lower for the OUT system, whereas total NH3 emissions, including the outdoor area, tended to be higher (12.0 and 14.1 g/day N-NH3 per pig for CON and OUT, respectively). Nitrous oxide emission was higher (1.6 and 4.6 g/day N-N2O per pig for CON and OUT, respectively) and methane emission was lower (12.1 and 5.9 g/day per pig for CON and OUT, respectively), for the OUT compared with the CON system.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnink AJA 1997. Ammonia emission from houses for growing pigs as affected by pen design, indoor climate and behaviour. PhD, Wageningen Agricultural University, The Netherlands.Google Scholar
Amon, B, Amon, T, Boxberger, J, Alt, C 2001. Emission of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading). Nutrient Cycling in Agroecosystems 60, 103113.CrossRefGoogle Scholar
Association of Official Analytical Chemists 1975. Official methods of analysis, 12th edition. AOAC, Washington, DC, USA.Google Scholar
Basset-Mens, C, van der Werf, HMG 2005. Scenario-based environmental assessment of farming systems: the case of pig production in France. Agriculture Ecosystems and Environment 105, 127144.CrossRefGoogle Scholar
Beattie, VE, O’Connell, NE, Moss, BW 2000. Influence of environmental enrichment on the behaviour, performance and meat quality of domestic pigs. Livestock Production Science 65, 7179.CrossRefGoogle Scholar
Begnaud, F, Pérès, C, Berdagué, JL 2003. Characterization of volatile effluents of livestock buildings by solid-phase microextraction. International Journal of Environmental and Analytical Chemistry 83, 837849.CrossRefGoogle Scholar
Begnaud, F, Pérès, C, Murat, C, Lebost, J, Berdagué, JL 2004. Mise en place de nouvelles méthodes de caractérisation des atmosphères de porcherie. Journées de la Recherche Porcine en France 36, 3946.Google Scholar
Brake, MBM, Zonderland, JJ, Lenskens, P, Schouten, P, Vermeer, H, Spollder, HAM, Hendriks, HJM, Hopster, H 2006. Formalised review of environmental enrichment for pigs in relation to political decision making. Applied Animal Behaviour Science 98, 165182.CrossRefGoogle Scholar
CEN Standard 13725 2003. Air quality – determination of odour concentration by dynamic olfactometry. European Committee for Standardization, Brussels, Belgium.Google Scholar
Corpen (Comité d’orientation pour des pratiques agricoles respectueuses de l’environnement) 2003. Estimation des rejets d’azote, phosphore, potassium, cuivre et zinc des porcs. Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales – Ministère de l’Ecologie et du Développement Durable, Paris, France.Google Scholar
Dalgaard, R, Halberg, N 2005. Life cycle assessment of Danish pork. In Proceedings of the International Workshop on Green Pork Production (ed. M Bonneau and M Bourgoin), pp. 165166. INRA, Paris, France.Google Scholar
de Greef, KH 1995. Prediction of growth and carcass parameters. In Modelling growth in the pig (ed. PJ Moughan, MWA Verstegen and MI Visser-Reyneveld), pp. 151168. Wageningen Pers, Wageningen, The Netherlands.Google Scholar
DeDecker, JM, Ellis, M, Wolter, BF, Corrigan, BP, Curtis, SE, Parr, EN, Webel, DM 2005. Effects of proportions of pigs removed from a group and subsequent floor space on growth performance of finishing pigs. Journal of Animal Science 83, 449454.CrossRefGoogle ScholarPubMed
Dourmad, JY, Pomar, C, Massé, D 2002. Modélisation du flux de composés à risque pour l’environnement dans un élevage porcin. Journées de la Recherche Porcine en France 34, 183194.Google Scholar
Fitamant, D, Quillien, JP, Callarec, J, Morvan, J, Lemasle, M, Laplanche, A 1999. Répartition et bilans sur l’azote contenu dans les rejets gazeux et liquides d’un établissement porcin. Journées de la Recherche Porcine en France 31, 99104.Google Scholar
Gentry, JG, McGlone, JJ, Blanton, JR, Miller, MF 2002. Alternative housing systems for pigs: influences on growth, composition, and pork quality. Journal of Animal Science 80, 17811790.CrossRefGoogle ScholarPubMed
Granier, R, Guingand, N, Massabie, P 1996. Influence du niveau d’hygrométrie, de la température et du taux de renouvellement de l’air sur l’évolution des teneurs en ammoniac. Journées de la Recherche Porcine en France 28, 209216.Google Scholar
Groenestein, CM, Van Faassen, HG 1996. Volatilization of ammonia nitrous oxide and nitric oxide in deep-litter systems for fattening pigs. Journal of Agricultural Engineering Research 65, 269274.CrossRefGoogle Scholar
Guingand, N 2003. Influence de la mise en place de caillebotis partiel et de la taille de la case sur les émissions d’ammoniac et d’odeurs en engraissement. Journées de la Recherche Porcine en France 35, 1520.Google Scholar
Guingand, N 2007. Réduire la densité animale en engraissement. Quelles conséquences sur l’émission d’odeurs et d’ammoniac? Journées de la Recherche Porcine en France 39, 4348.Google Scholar
Gustafsson, G 1999. Factors affecting the release and concentration of dust in pig houses. Journal of Agricultural Engineering Research 74, 379390.CrossRefGoogle Scholar
Hamilton, DN, Ellis, M, Wolter, BF, Schinckel, AP, Wilson, ER 2003. The growth performance of the progeny of two swine sire lines reared under different floor space allowances. Journal of Animal Science 81, 11261135.CrossRefGoogle ScholarPubMed
Hassouna, M, Robin, P, Texier, C, Ramonet, Y 2005. NH3, N2O and CH4 emission factors from pig-on-litter systems. In Proceedings of the International Workshop on Green Pork Production (ed. M Bonneau and M Bourgoin), pp. 121122. INRA, Paris, France.Google Scholar
IPCC (Intergovernmental Panel on Climate Change) 2006. 2006 IPCC guidelines for national greenhouse gas inventories. In Agriculture, forestry and other land use (ed. S Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe), vol. 2. IGES, Hayama, Japan.Google Scholar
Kanis, E, Groen, AF, de Greef, KH 2003. Societal concerns about pork and pork production and their relationships to the production system. Journal of Agricultural and Environmental Ethics 16, 137162.CrossRefGoogle Scholar
Kermarrec, C, Robin, P 2002. Emissions de gaz azotés en élevage de porcs sur litière de sciure. Journées de la Recherche Porcine en France 34, 155160.Google Scholar
Lebret, B, Massabie, P, Granier, R, Juin, H, Mourot, J, Chevillon, P 2002. Influence of outdoor rearing and indoor temperature on growth performance, carcass, adipose tissue and muscle traits in pigs, and on the technological and eating quality of dry-cured hams. Meat Science 62, 447455.CrossRefGoogle ScholarPubMed
Le Dividich, J, Noblet, J, Herpin, P, Van Milgen, J, Quiniou, N 1998. Thermoregulation. In Progress in pig science (ed. J Wiseman, MA Varley and JP Chadwick), pp. 229263. Nottingham University Press, Nottingham, UK.Google Scholar
Misselbrook, TH, Webb, J, Chadwick, DR, Ellis, S, Pain, BF 2001. Gaseous emissions from outdoor concrete yards used by livestock. Atmospheric Environment 35, 53315338.CrossRefGoogle Scholar
Møller, HB, Sommer, SG, Ahring, BK 2004. Biological degradation and greenhouse gas emissions during pre-storage of liquid animal manure. Journal of Environmental Quality 33, 2736.CrossRefGoogle ScholarPubMed
Nicks, B, Laitat, M, Farnir, F, Vandenheede, M, Désiron, A, Verhaeghe, C, Canart, B 2004. Gaseous emissions from deep-litter pens with straw or sawdust for fattening pigs. Animal Science 78, 99107.CrossRefGoogle Scholar
Noblet, J, Sève, B, Jondreville, C 2004. Nutritional value for pigs. In INRA-AFZ 2004. Tables of composition and nutritional value of feed material (ed. D Sauvant, JM Perez and G Tran), pp. 2535. Wageningen Academic Publishers, Wageningen, The Netherlands.CrossRefGoogle Scholar
Oliveira, PA, Souloumiac, D, Robin, P, Kermarrec, C 1999. Comparaison des productions de chaleur en engraissement de porcs sur litière de sciure ou sur caillebotis intégral. Annales de Zootechnie 48, 117129.CrossRefGoogle Scholar
Osada, T, Rom, HB, Dahl, P 1998. Continuous measurement of nitrous oxide and methane emission in pig units by infrared photoacoustic detection. American Society of Agricultural Engineers – Transactions of ASAE 41, 11091114.CrossRefGoogle Scholar
Philippe, FX, Laitat, M, Canart, B, Farnir, F, Massart, L, Vandenheede, M, Nicks, B 2006. Effects of a reduction of diet crude protein content on gaseous emissions from deep-litter pens for fattening pigs. Animal Research 55, 397407.CrossRefGoogle Scholar
Portejoie, S, Dourmad, JY, Martinez, J, Lebreton, Y 2004. Effect of lowering crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livestock Production Science 91, 4555.CrossRefGoogle Scholar
Rainelli, P 2001. L’image de la viande de porc en France. Attitude des consommateurs. Courrier de l’Environnement de l’INRA 42, 4760.Google Scholar
Robertson, JF, Wilson, D, Smith, WJ 1990. Atrophic rhinitis: the influence of the aerial environment. Animal Production 50, 173182.Google Scholar
Robin, P, Hassouna, M, Texier, C 2004. Emission d’ammoniac et de protoxyde d’azote des porcs engraissés sur litière de paille. Journées de la Recherche Porcine en France 36, 6370.Google Scholar
Stern, S, Sonesson, U, Gunnarsson, S, Öborn, I, Kumm, KI, Nybrant, T 2005. Sustainable development of food production: a case study on scenarios for pig production. AMBIO: A Journal of the Human Environment 34, 402407.CrossRefGoogle ScholarPubMed
Van der Wal, PG, Matelman, G, De Vries, AW, Vonder, MA, Smulders, FJM, Geesink, GH, Engel, B 1993. ‘Scharrel’ (free-range) pigs: carcass composition, meat quality and taste-panel studies. Meat Science 34, 2737.CrossRefGoogle ScholarPubMed
Vedrenne F 2007. Etude des processus de dégradation anaérobie et de production de méthane au cours du stockage des lisiers. PhD, Ecole Nationale Supérieure d’Agronomie de Rennes, France.Google Scholar