Published online by Cambridge University Press: 23 May 2017
The aim of the present study was to evaluate the prediction ability of models that cope with longevity phenotypic expression as uncensored and censored in Nellore cattle. Longevity was defined as the difference between the dates of last weaned calf and cow birth. There were information of 77 353 females, being 61 097 cows with uncensored phenotypic information and 16 256 cows with censored records. These data were analyzed considering three different models: (1) Gaussian linear model (LM), in which only uncensored records were considered; and two models that consider both uncensored and censored records: (2) Censored Gaussian linear model (CLM); and (3) Weibull frailty hazard model (WM). For the model prediction ability comparisons, the data set was randomly divided into training and validation sets, containing 80% and 20% of the records, respectively. There were considered 10 repetitions applying the following restrictions: (a) at least three animals per contemporary group in the training set; and (b) sires with more than 10 progenies with uncensored records (352 sires) should have daughters in the training and validation sets. The variance components estimated using the whole data set in each model were used as true values in the prediction of breeding values of the animals in the training set. The WM model showed the best prediction ability, providing the lowest χ2 average and the highest number of sets in which a model had the smallest value of χ2 statistics. The CLM and LM models showed prediction abilities 2.6% and 3.7% less efficient than WM, respectively. In addition, the accuracies of sire breeding values for LM and CLM were lower than those obtained for WM. The percentages of bulls in common, considering only 10% of sires with the highest breeding values, were around 75% and 54%, respectively, between LM–CLM and LM–WM models, considering all sires, and 75% between LM–CLM and LM–WM, when only sires with more than 10 progenies with uncensored records were taken into account. These results are indicative of reranking of animals in terms of genetic merit between LM, CLM and WM. The model in which censored records of longevity were excluded from the analysis showed the lowest prediction ability. The WM provides the best predictive performance, therefore this model would be recommended to perform genetic evaluation of longevity in this population.