Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T11:43:41.651Z Has data issue: false hasContentIssue false

Estimation of genetic trends from 1977 to 1998 of body composition and physiological state of Large White pigs at birth

Published online by Cambridge University Press:  01 November 2007

L. Canario*
Affiliation:
INRA UR337 Station de Génétique Quantitative et Appliquée, F-78352 Jouy-en-Josas, France
M. C. Père
Affiliation:
INRA UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
T. Tribout
Affiliation:
INRA UR337 Station de Génétique Quantitative et Appliquée, F-78352 Jouy-en-Josas, France
F. Thomas
Affiliation:
INRA UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
C. David
Affiliation:
INRA UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
J. Gogué
Affiliation:
INRA UE332 Domaine expérimental de Bourges, F-18300 Osmoy, France
P. Herpin
Affiliation:
INRA UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
J. P. Bidanel
Affiliation:
INRA UR337 Station de Génétique Quantitative et Appliquée, F-78352 Jouy-en-Josas, France
J. Le Dividich
Affiliation:
INRA UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35590 Saint-Gilles, France
Get access

Abstract

Genetic trends for body composition and blood plasma parameters of newborn piglets were estimated through the comparison of two groups of pigs (G77 and G98, respectively) produced by inseminating Large White (LW) sows with semen from LW boars born either in 1977 or in 1998. Random samples of 18 G77 and 19 G98 newborn piglets were used for whole carcass and tissue sampling. Plasma concentrations of glucose, albumin and IGF-1 were determined on 75 G77 and 90 G98 piglets from 18 litters. The G98 piglets had less carcass dry matter, protein and energy (P < 0.01) than their G77 counterparts. When expressed in g/kg birth weight, livers were lighter (P < 0.001) and contained less glycogen (P < 0.01) in G98 piglets, with no difference in the activity of the hepatic glucose-6-phosphatase between G98 and G77 piglets. Concentrations of protein, DNA, RNA in longissimus dorsi muscle were unaffected by selection. Plasma concentrations of glucose (P < 0.05) and IGF-1 (P < 0.01) were lower in G98 than in G77 piglets. On the whole, the results suggest that the improvement in lean growth rate and in sow prolificacy from 1977 to 1998 has resulted in a lower maturity of piglets at birth.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Becker, K, Farries, E, Pfeffer, E 1979. Changes in body composition of pig fetuses during pregnancy. Archiv für Tierernährung 29, 561568.CrossRefGoogle ScholarPubMed
Canario, L 2006. Genetic aspects of piglet mortality at birth and in early suckling period: relationships with sow maternal abilities and piglet vitality. PhD thesis, Institut National Agronomique Paris-Grignon, France.Google Scholar
Canario, L, Rydhmer, L, Gogué, J, Tribout, T, Bidanel, JP 2007. Genetic trends for farrowing characteristics in the French Large White breed estimated from 1977 to 1998. Animal 1, 929938.Google Scholar
Greenwood, PL, Hunt, AS, Slepetis, RM, Finnerty, KD, Alston, C, Beermann, DH, Bell, AW 2002. Effects of birth weight and postnatal nutrition on neonatal sheep: III. Regulation of energy metabolism. Journal of Animal Science 80, 28502861.CrossRefGoogle ScholarPubMed
Hakkarainen J 1975. Developmental changes of protein, RNA, DNA, lipid, and glycogen in the liver, skeletal muscle, and brain of the piglet. Acta Veterinaria Scandinavica. (suppl.), pp. 1–198.Google Scholar
Hausman, GJ, Campion, DR, Buonomo, FC 1991. Concentration of insulin-like growth factors (IGF-I and IGF-II) in tissues of developing lean and obese pig fetuses. Growth Development and Aging 55, 4352.Google Scholar
Herpin, P, Le Dividich, J, Amaral, N 1993. Effect of selection for lean tissue growth on body composition and physiological state of the pig at birth. Journal of Animal Science 71, 26452653.Google Scholar
Herpin, P, Damon, M, Le Dividich, J 2002. Development of thermoregulation and neonatal survival in pigs. Livestock Production Science 78, 2545.Google Scholar
Hoffman, EC, Wangsness, PJ, Hagen, DR, Etherton, TD 1983. Fetuses of lean and obese swine in late gestation. Body composition, plasma hormones and muscle development. Journal of Animal Science 57, 609620.Google Scholar
Labarca, C, Paigen, K 1980. A simple, rapid, and sensitive DNA assay procedure. Analytical Biochemistry 102, 344352.CrossRefGoogle ScholarPubMed
Le Dividich, J, Mormède, P, Catheline, M, Caritez, JC 1991. Body composition and cold resistance of the neonatal pig from European (Large White) and Chinese (Meishan) breeds. Biology of the Neonate 51, 268277.CrossRefGoogle Scholar
Leenhouwers, JI, Knol, EF, Van der Lende, T 2002a. Differences in late prenatal development as an explanation for genetic differences in piglet survival. Livestock Production Science 78, 5762.CrossRefGoogle Scholar
Leenhouwers, JI, Knol, EF, De Groot, PN, Vos, H, Van der Lende, T 2002b. Fetal development in the pig in relation to genetic merit for piglet survival. Journal of Animal Science 80, 17591770.Google Scholar
Lowry, OH, Rosenbrough, NJ, Farr, AL, Randall, RJ 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193, 265275.Google Scholar
McPherson, RL, Ji, F, Wu, G, Blanton, JR, Kim, SW 2004. Growth and compositional changes of fetal tissues in pigs. Journal of Animal Science 82, 25342540.CrossRefGoogle ScholarPubMed
Munro, HN, Fleck, A 1969. Analysis of tissues and body fluids for nitrogenous constituents. In Mammalian protein metabolism no. 3 (ed. HN Munro), pp. 423525. Academic Press, New York.CrossRefGoogle Scholar
Ollivier, L 1998. Genetic improvement of the pig. In The genetics of the pig (ed. MF Rothschild and A Ruvinsky), pp. 511540. CAB International, Wallingford, Oxon.Google Scholar
Randall, GCB, L’Ecuyer, C 1976. Tissue glycogen and blood glucose and fructose levels in the pig fetus during the second half of gestation. Biology of the Neonate 28, 7482.Google Scholar
Smith, C 1977. Use of stored frozen semen and embryos to measure genetic trends in farm livestock. Zeitschrift für Tierzuchtung und Zuchtungsbiologie 94, 119130.Google Scholar
Statistical Analysis Systems Institute 2001. Version 5.2. SAS Institute Inc, Cary, NC, USA.Google Scholar
Stone, RT 1984. Relationship of alpha-fetoprotein and albumin in fetuses and neonates from genetically lean and obese swine. Biology of the Neonate 46, 122130.CrossRefGoogle ScholarPubMed
Stone, RT, Christenson, RK 1982. The relationship of fetal weight to serum albumin and alpha-fetoprotein in swine. Journal of Animal Science 55, 818825.Google Scholar
Stone, RT, Leymaster, KA 1985. Relationship of birth weight and pre-nursing concentrations of serum albumin to survival and growth rate in swine. Growth 49, 263270.Google Scholar
Stone, RT, Campion, DR, Klindt, J, Martin, RJ 1985. Blood parameters and body composition in fetuses from reciprocal crosses of genetically lean and obese swine. Proceedings of the Society for Experimental Biology and Medicine 180, 191195.Google Scholar
Svendsen, J, Bengtsson, ACH, Svendsen, LS 1986. Occurrence and causes of traumatic injuries in neonatal pigs. Pig News and Information 7, 159170.Google Scholar
Tribout, T, Caritez, JC, Gogué, J, Gruand, J, Billon, Y, Bouffaud, M, Lagant, H, Le Dividich, J, Thomas, F, Quesnel, H, Guéblez, R, Bidanel, JP 2003. Estimation, par utilisation de semence congelée, du progrès génétique réalisé en France entre 1977 et 1998 dans la race porcine Large White: résultats pour quelques caractères de reproduction femelle. Journées de la Recherche Porcine en France 35, 285292.Google Scholar
Tribout, T, Caritez, JC, Gogué, J, Gruand, J, Bouffaud, M, Billon, Y, Griffon, H, Brenot, S, Péry, C, Le Tiran, MH, Bussières, F, Le Roy, P, Bidanel, JP 2004. Estimation, par utilisation de semence congelée, du progrès génétique réalisé en France entre 1977 et 1998 dans la race porcine Large White: résultats pour quelques caractères de production et de qualité des tissus gras et maigres. Journées de la Recherche Porcine en France 36, 275282.Google Scholar
Wise, T, Stone, RT, Vernon, MW 1991. Relationships of serum estriol, cortisol and albumin concentrations with pig weight at 110 days of gestation and at birth. Biology of the Neonate 59, 114119.Google Scholar
Wise, T, Roberts, AJ, Christenson, RK 1997. Relationships of light and heavy fetuses to uterine position, placental weight, gestational age, and fetal cholesterol concentrations. Journal of Animal Science 75, 21972207.Google Scholar