Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T03:51:42.800Z Has data issue: false hasContentIssue false

Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach

Published online by Cambridge University Press:  19 August 2011

M. Zehetmeier*
Affiliation:
Department of Agricultural Economics, Institute of Agricultural Economics and Farm Management, Technische Universität München, Alte Akademie 14, 85350 Freising, Germany
J. Baudracco
Affiliation:
Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza, CP S3080HOF, Argentina Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Private Bag 11-222, Palmerston North 5301, New Zealand
H. Hoffmann
Affiliation:
Department of Agricultural Economics, Institute of Agricultural Economics and Farm Management, Technische Universität München, Alte Akademie 14, 85350 Freising, Germany
A. Heißenhuber
Affiliation:
Department of Agricultural Economics, Institute of Agricultural Economics and Farm Management, Technische Universität München, Alte Akademie 14, 85350 Freising, Germany
*
Get access

Abstract

Milk yield per cow has continuously increased in many countries over the last few decades. In addition to potential economic advantages, this is often considered an important strategy to decrease greenhouse gas (GHG) emissions per kg of milk produced. However, it should be considered that milk and beef production systems are closely interlinked, as fattening of surplus calves from dairy farming and culled dairy cows play an important role in beef production in many countries. The main objective of this study was to quantify the effect of increasing milk yield per cow on GHG emissions and on other side effects. Two scenarios were modelled: constant milk production at the farm level and decreasing beef production (as co-product; Scenario 1); and both milk and beef production kept constant by compensating the decline in beef production with beef from suckler cow production (Scenario 2). Model calculations considered two types of production unit (PU): dairy cow PU and suckler cow PU. A dairy cow PU comprises not only milk output from the dairy cow, but also beef output from culled cows and the fattening system for surplus calves. The modelled dairy cow PU differed in milk yield per cow per year (6000, 8000 and 10 000 kg) and breed. Scenario 1 resulted in lower GHG emissions with increasing milk yield per cow. However, when milk and beef outputs were kept constant (Scenario 2), GHG emissions remained approximately constant with increasing milk yield from 6000 to 8000 kg/cow per year, whereas further increases in milk yield (10 000 kg milk/cow per year) resulted in slightly higher (8%) total GHG emissions. Within Scenario 2, two different allocation methods to handle co-products (surplus calves and beef from culled cows) from dairy cow production were evaluated. Results showed that using the ‘economic allocation method’, GHG emissions per kg milk decreased with increasing milk yield per cow per year, from 1.06 kg CO2 equivalents (CO2eq) to 0.89 kg CO2eq for the 6000 and 10 000 kg yielding dairy cow, respectively. However, emissions per kg of beef increased from 10.75 kg CO2eq to 16.24 kg CO2eq due to the inclusion of suckler cows. This study shows that the environmental impact (GHG emissions) of increasing milk yield per cow in dairy farming differs, depending upon the considered system boundaries, handling and value of co-products and the assumed ratio of milk to beef demand to be satisfied.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbeitsgemeinschaft Deutscher Rinderzüchter (ADR) 2010. Rinderproduktion in Deutschland 2009. ADR e.V., Bonn, DE.Google Scholar
Bayerische Landesanstalt für Landwirtschaft (LfL) 2006. Materialsammlung Futterwirtschaft, 4th edition. LfL, München, DE.Google Scholar
Bayerische Landesanstalt für Landwirtschaft (LfL) 2007. Leitfaden für die Düngung von Acker und Grünland, 8th edition. LfL, München, DE.Google Scholar
Beauchemin, KA, Janzen, HH, Little, SM, McAllister, TA, McGinn, SM 2010. Life cycle assessment of greenhouse gas emissions from beef production in western Canada: a case study. Agricultural Systems 103, 371379.CrossRefGoogle Scholar
Biskupek, B, Patyk, A, Radtke, J 1997. Daten zur Pflanzenproduktion. In Nachwachsende Energieträger (ed. M Kaltschmitt and GA Reinhardt), pp. 167226. Vieweg, Braunschweig/Wiesbaden, DE.Google Scholar
British Standards Institution (BSI) 2008. Guide to PAS 2050. How to assess the carbon footprint of goods and services. BSI, London, UK.Google Scholar
Brüggemann, DH 2011. Anpassungsmöglichkeiten der deutschen Rindermast an die Liberalisierung der Agrarmärkte. Sonderheft 345. vTI, Braunschweig, DE.Google Scholar
Cederberg, C, Stadig, M 2003. System expansion and allocation in life cycle assessment of milk and beef production. International Journal of Life Cycle Assessment 8, 350356.CrossRefGoogle Scholar
Dalgaard, R, Schmidt, J, Halberg, N, Christensen, P, Thrane, M, Pengue, WA 2008. LCA of soybean meal. International Journal of Life Cycle Assessment 13, 240254.CrossRefGoogle Scholar
Destatis 2010. Genesis-online. Retrieved October 12, 2010, from www.destatis.deGoogle Scholar
Deutsche Landwirtschafts-Gesellschaft (DLG) 1997. DLG – Futterwerttabellen Wiederkäuer, 7th edition. DLG-Verlag, Frankfurt am Main, DE.Google Scholar
Deutsche Landwirtschafts-Gesellschaft (DLG) 2005. Bilanzierung der Nährstoffausscheidungen landwirtschaftlicher Nutztiere. Arbeiten der DLG Band 199. DLG-Verlag, Frankfurt am Main, DE.Google Scholar
Dillon, P, Berry, DP, Evans, RD, Buckley, F, Horan, B 2006. Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. Livestock Science 99, 141158.CrossRefGoogle Scholar
Ecoinvent 2007. Ecoinvent Data v2.0. Swiss Centre of Life Cycle Inventories, Zürich, CH.Google Scholar
Eurostat 2010. Statistical office of the European Union. Statistics. Agriculture and fisheries. Retrieved October 12, 2010, from http://epp.eurostat.ec.europa.eu/portal/page/portal/eurostat/home/Google Scholar
FAOSTAT 2010. Food and Agriculture Organization of the United Nations. Statistics, Rome, Italy. Retrieved October 7, 2010, from http://faostat.fao.org/Google Scholar
Flachowsky, G, Brade, W 2007. Potenziale zur Reduzierung der Methan-Emissionen bei Wiederkäuern. Züchtungskunde 79, 417465.Google Scholar
Garnett, T 2009. Livestock-related greenhouse gas emissions: impacts and options for policy makers. Environmental Science & Policy 12, 491503.CrossRefGoogle Scholar
Gesellschaft für Ernährungsphysiologie (GfE) 1995. Energie- und Nährstoffbedarf Landwirtschaftlicher Nutztiere. Empfehlungen zur Energie- und Nährstoffversorgung von Mastrindern. DLG-Verlag, Frankfurt am Main, DE.Google Scholar
Gesellschaft für Ernährungsphysiologie (GfE) 2001. Energie- und Nährstoffbedarf Landwirtschaftlicher Nutztiere. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder. DLG-Verlag, Frankfurt am Main, DE.Google Scholar
Gill, M, Smith, P, Wilkinson, JM 2010. Mitigating climate change: the role of domestic livestock. Animal 4, 323333.CrossRefGoogle ScholarPubMed
Gorn, A, Schoch, R 2010. AMI-Marktbilanz Milch 2010. AMI GmbH, Bonn, DE.Google Scholar
Gruber, L, Pries, M, Spiekers, H, Schwarz, FJ, Staudacher, W 2006. Schätzung der Futteraufnahme bei der Milchkuh. DLG-Informationen 1/2006. Retrieved August 15, 2010, from http://www.futtermittel.net/pdf/futteraufnahme_milchkuh06.pdfGoogle Scholar
Haenel, H 2010. Calculations of Emissions from German Agriculture – National Emission Inventory Report (NIR) 2010 for 2008, Sonderheft 334. vTI, Braunschweig, DE.Google Scholar
Haiger, A, Knaus, W 2010. A comparison of dual-purpose Simmental and Holstein Friesian dairy cows in milk and meat production: 1(st) comm. Milk production without concentrates. Züchtungskunde 82, 131143.Google Scholar
Hindrichsen, IK, Wettstein, HR, Machmuller, A, Kreuzer, M 2006. Methane emission, nutrient degradation and nitrogen turnover in dairy cows and their slurry at different milk production scenarios with and without concentrate supplementation. Agriculture Ecosystems & Environment 113, 150161.CrossRefGoogle Scholar
Hörtenhuber, S, Lindenthal, T, Amon, B, Markut, T, Kirner, L, Zollitsch, W 2010. Greenhouse gas emissions from selected Austrian dairy production systems – model calculations considering the effects of land use change. Renewable Agriculture and Food Systems 25, 316329.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC) 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Prepared by the National Greenhouse Gas Inventories Programme (ed. HS Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe), chapters 10 and 11 (10.1–10.87; 11.1–11.54). IGES, Hayama, Japan.Google Scholar
Intergovernmental Panel on Climate Change (IPCC) 2007. Climate change 2007. The physical science basis. In Contribution of Working Group I to the Fourth Assessment report of the Intergovernmental Panel on Climate Change (ed. S Solomon, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor and HL Miller), pp. 2091. Cambridge University Press, Cambridge, UK and New York, USA.Google Scholar
International Organization for Standardization (ISO) 2006. Environmental management – life cycle assessment – requirements and guidelines. ISO 14044:2006(E). ISO, Geneva, Switzerland.Google Scholar
Kirchgeßner, M, Windisch, W, Müller, H 1995. Nutritional factors for the quantification of methane production. In Ruminant physiology: digestion, metabolism, growth and reproduction. Proceedings of the Eighth International Symposium on Ruminant Physiology (ed. W van Engelhardt, S Leonhard-Marek, G Breves and D Giesecke), pp. 333351. Ferdinand Enke Verlag, Stuttgart, DE.Google Scholar
Kraatz, S 2009. Ermittlung der Energieeffizienz in der Tierhaltung am Beispiel der Milchviehhaltung. PhD, Humboldt-Universität zu, Berlin, DE.Google Scholar
Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL) 2008. Betriebsplanung Landwirtschaft 2008/09, 21st edition. KTBL, Darmstadt, DE.Google Scholar
Lovett, DK, Shalloo, L, Dillon, P, O'Mara, FP 2006. A systems approach to quantify greenhouse gas fluxes from pastoral dairy production as affected by management regime. Agricultural Systems 88, 156179.CrossRefGoogle Scholar
Lucy, MC 2001. ADSA Foundation Scholar Award – reproductive loss in high-producing dairy cattle: where will it end? Journal of Dairy Science 84, 12771293.CrossRefGoogle Scholar
Martin, S, Seeland, G 1999. Effects of specialisation in cattle production on ecologically harmful emissions. Livestock Production Science 61, 171178.CrossRefGoogle Scholar
Monteny, G, Bannink, A, Chadwick, D 2006. Greenhouse gas abatement strategies for animal husbandry. Agriculture Ecosystems & Environment 112, 163170.CrossRefGoogle Scholar
Neufeldt, H, Schäfer, M 2008. Mitigation strategies for greenhouse gas emissions from agriculture using a regional economic-ecosystem model. Agricultural Ecosystems & Environment 123, 305316.CrossRefGoogle Scholar
Olesen, JE, Schelde, K, Weiske, A, Weisbjerg, , Asman, WA, Djurhuus, J 2006. Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture Ecosystems & Environment 112, 207220.CrossRefGoogle Scholar
Patyk, A, Reinhardt, GA 1997. Düngemittel – Energie- und Stoffstrombilanzen. Vieweg, Braunschweig/Wiesbaden, DE.CrossRefGoogle Scholar
Rotz, CA, Montes, F, Chianese, DS 2010. The carbon footprint of dairy production systems through partial life cycle assessment. Journal of Dairy Science 93, 12661282.CrossRefGoogle ScholarPubMed
Schaack, D, von Schenck, W, Schraa, M 2010. AMI-Marktbilanz. Getreide-Ölsaaten-Futermittel. AMI GmbH, Bonn, DE.Google Scholar
Schils, RLM, Verhagen, A, Haarts, HFM, Kuikman, PJ, Sebek, LBJ 2006. Effect of improved nitrogen management on greenhouse gas emissions from intensive dairy systems in the Netherlands. Global Change Biology 12, 382391.CrossRefGoogle Scholar
Smith, P, Martino, D, Cai, Z, Gwary, D, Janzen, H, Kumar, P, McCarl, B, Ogle, S, O'Mara, F, Rice, C, Scholes, B, Sirotenko, O, Howden, M, McAllister, T, Pan, G, Romanenkov, V, Schneider, U, Towprayoon, S, Wattenbach, M, Smith, J 2008. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society – B Biological sciences 363, 789813.CrossRefGoogle ScholarPubMed
Steinfeld, H, Wassenaar, T 2007. The role of livestock production in carbon and N cycles. Annual Review of Environment and Resources 32, 271294.CrossRefGoogle Scholar
Umweltbundesamt 2010. Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix 1990–2008. Retrieved January 21, 2010, from http://www.umweltbundesamt.de/energie/archiv/co2-strommix.pdfGoogle Scholar
United States Department of Agriculture (USDA) 2010. National Agricultural Statistics. Retrieved November 12, 2010, from http://www.usda.gov/wps/portal/usda/usdahomeGoogle Scholar
Von Witzke, H, Noleppa, S 2010. EU agriculture production and trade: Can more efficiency prevent increasing ‘land-grabbing’ outside of Europe? Research report, Humboldt Universität zu Berlin. Retrieved November 12, 2010, from http://www.agripol.de/Final_Report_100505_Opera.pdfGoogle Scholar
Weiß, D, Kohlmüller, M 2010. AMI-Marktbilanz. Vieh und Fleisch. AMI GmbH, Bonn, DE.Google Scholar
Weiske, A, Vabitsch, A, Olesen, JE, Schelde, K, Michel, J, Friedrich, R, Kaltschmitt, M 2006. Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agriculture Ecosystems & Environment 112, 221232.CrossRefGoogle Scholar
Williams, AG, Audsley, E, Sandars, DL 2006. Determining the environmental burdens and resource use in the production of agricultural and horticultural commodities. Main report. DEFRA research project ISO205. Cranfield University and Defra, Bredford, UK. Retrieved April 10, 2010, from http://www.cranfield.ac.uk/sas/naturalresources/research/projects/is0205.htmlGoogle Scholar
Wohlfahrt, M, Gorn, A, Hellebrand, D, Michels, P, Thielen, M 2008. ZMP-Marktbilanz Milch. ZMP-GmbH, Bonn, DE.Google Scholar