Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-18T22:18:35.589Z Has data issue: false hasContentIssue false

Degradation of terpenes and terpenoids from Mediterranean rangelands by mixed rumen bacteria in vitro

Published online by Cambridge University Press:  10 October 2011

M. Malecky
Affiliation:
INRA, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France AgroParisTech, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
H. Albarello*
Affiliation:
INRA, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France AgroParisTech, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
L. P. Broudiscou*
Affiliation:
INRA, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France AgroParisTech, UMR 791 Modélisation Systémique Appliquée aux Ruminants, 16 rue Claude Bernard, 75231 Paris Cedex 05, France
*
Get access

Abstract

This in vitro study aimed at estimating the disappearance rates of 14 terpenes and terpenoids after 24-h incubation with mixed bacteria from caprine rumens. These compounds comprised nine monoterpene hydrocarbons (δ-3-carene, p-cymene, β-myrcene, (E)- and (Z)-β-ocimene, α-phellandrene, α-terpinene, γ-terpinene and α-terpinolene), four oxygenated monoterpenes ((E)- and (Z)-linalool oxide, 4-terpinenol, α + γ terpineol) and one sesquiterpene hydrocarbon (β-cedrene). They were individually exposed to goat rumen microflora for 24 h in 70 ml culture tubes at an input level of 0.5 ml/l. Terpenoids were the least degraded, 100% of (E)-linalool oxide, 95% of (Z)-linalool oxide, 91% of 4-terpinenol and 75% of terpineol remained intact after 24-h incubation. In contrast, α-terpinolene concentration in fermentation broth extracts was below quantification limit, thus indicating an extensive, if not complete, degradation by rumen bacteria. Only 2% of the initial amounts of α-phellandrene were recovered. The other monoterpenes and β-cedrene were partly degraded, with losses ranging from 67% for δ-3-carene to 90% for (E)-β-ocimene. The corresponding rates of disappearance were between 2.67 and 4.08 μmol/ml inoculum per day.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, M, Pinna, G, Molle, G, Fiori, M, Spada, S, Decandia, M, Scintu, MF, Piredda, G, Pirisi, A 2006. The inclusion of a daisy plant (Chrysanthemum coronarium) in dairy sheep diet: 2. Effect on the volatile fraction of milk and cheese. Livestock Production Science 101, 6880.CrossRefGoogle Scholar
Belviso, S, Giordano, M, Dolci, P, Zeppa, G 2011. Degradation and biosynthesis of terpenoids by lactic acid bacteria isolated from cheese: first evidence. Dairy Science & Technology 91, 227236.CrossRefGoogle Scholar
Broudiscou, L, Jouany, JP 1995. Reassessing the manipulation of protein synthesis by rumen microbes. Reproduction Nutrition Development 35, 517535.CrossRefGoogle ScholarPubMed
Broudiscou, LP, Papon, Y, Broudiscou, AF 1999. Optimal mineral composition of artificial saliva for fermentation and methanogenesis in continuous culture of rumen microorganisms. Animal Feed Science and Technology 79, 4355.CrossRefGoogle Scholar
Broudiscou, L, Cornu, A, Rouzeau, A 2007. In vitro degradation of ten mono- and sesquiterpenes of plant origin by caprine rumen microorganisms. Journal of the Science of Food and Agriculture 87, 16531658.CrossRefGoogle Scholar
Broudiscou, LP, Papon, Y, Fabre, M, Broudiscou, AF 1997. Maintenance of rumen protozoa populations in a dual outflow continuous fermenter. Journal of the Science of Food and Agriculture 75, 273280.3.0.CO;2-8>CrossRefGoogle Scholar
Bugaud, C, Buchin, S, Coulon, JB, Hauwuy, A, Dupont, D 2001. Influence of the nature of alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Lait 81, 401414.CrossRefGoogle Scholar
Castillejos, L, Calsamiglia, S, Ferret, A 2006. Effect of essential oil active compounds on rumen microbial fermentation and nutrient flow in in vitro systems. Journal of Dairy Science 89, 26492658.CrossRefGoogle ScholarPubMed
Chion, AR, Tabacco, E, Giaccone, D, Peiretti, PG, Battelli, G, Borreani, G 2010. Variation of fatty acid and terpene profiles in mountain milk and “toma piemontese” cheese as affected by diet composition in different seasons. Food Chemistry 121, 393399.CrossRefGoogle Scholar
Dziba, LE, Hall, JO, Provenza, FD 2006. Feeding behavior of lambs in relation to kinetics of 1,8-cineole dosed intravenously or into the rumen. Journal of Chemical Ecology 32, 391408.CrossRefGoogle ScholarPubMed
Estell, RE, Fredrickson, EL, Anderson, DM, Havstad, KM, Remmenga, MD 2002. Effects of four mono- and sesquiterpenes on the consumption of alfalfa pellets by sheep. Journal of Animal Science 80, 33013306.CrossRefGoogle ScholarPubMed
Fedele, V, Claps, S, Rubino, R, Sepe, L, Cifuni, GF 2004. Variation in terpene content and profile in milk in relation to the dominant plants in the diet of grazing goats. South African Journal of Animal Science 34, 145147.Google Scholar
Fedele, V, Claps, S, Rubino, R, Sepe, L, Cifuni, GF 2005. Volatile compounds in herbage intake by goats in two different grazing seasons. Options Méditerranéennes, Série A, Séminaires Méditerranéens 67, 261267.Google Scholar
Jouany, JP, Demeyer, DI, Grain, J 1988. Effect of defaunating the rumen. Animal Feed Science and Technology 21, 229265.CrossRefGoogle Scholar
Malecky, M, Fedele, V, Broudiscou, LP 2009. In vitro degradation by mixed rumen bacteria of 17 mono- and sesquiterpenes typical of winter and spring diets of goats on Basilitica rangelands (southern Italy). Journal of the Science of Food and Agriculture 89, 531536.CrossRefGoogle Scholar
Minitab 1998. User's guide 2: data analysis and quality tools. Minitab Inc., State College, PA.Google Scholar
Narjisse, H 1982. Acceptability of big sagebrush to sheep and goats: role of monoterpenes. Dissertation Abstracts International, B 42, Utah State University, Logan, UT.Google Scholar
Rutledge, D 1981. Bioconversion de molécules terpénoïdiques par des bactéries du tube digestif d'insectes xylophages. PhD, Université Pierre et Marie Curie, Paris.Google Scholar
Weidenhamer, JD, Macias, FA, Fischer, NH, Williamson, GB 1993. Just how soluble are monoterpenes? Journal of Chemical Ecology 19, 17991807.CrossRefGoogle ScholarPubMed