Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Ricci, P.
Chagunda, M. G. G.
Rooke, J.
M. Houdijk, J. G.
Duthie, C.-A.
Hyslop, J.
Roehe, R.
and
Waterhouse, A.
2014.
Evaluation of the laser methane detector to estimate methane emissions from ewes and steers1.
Journal of Animal Science,
Vol. 92,
Issue. 11,
p.
5239.
Velazco, J. I.
Cottle, D. J.
and
Hegarty, R. S.
2014.
Methane emissions and feeding behaviour of feedlot cattle supplemented with nitrate or urea.
Animal Production Science,
Vol. 54,
Issue. 10,
p.
1737.
Cottle, D.J.
Velazco, J.
Hegarty, R.S.
and
Mayer, D.G.
2015.
Estimating daily methane production in individual cattle with irregular feed intake patterns from short-term methane emission measurements.
Animal,
Vol. 9,
Issue. 12,
p.
1949.
Dorich, C.D.
Varner, R.K.
Pereira, A.B.D.
Martineau, R.
Soder, K.J.
and
Brito, A.F.
2015.
Short communication: Use of a portable, automated, open-circuit gas quantification system and the sulfur hexafluoride tracer technique for measuring enteric methane emissions in Holstein cows fed ad libitum or restricted.
Journal of Dairy Science,
Vol. 98,
Issue. 4,
p.
2676.
Watt, L.J.
Clark, C.E.F.
Krebs, G.L.
Petzel, C.E.
Nielsen, S.
and
Utsumi, S.A.
2015.
Differential rumination, intake, and enteric methane production of dairy cows in a pasture-based automatic milking system.
Journal of Dairy Science,
Vol. 98,
Issue. 10,
p.
7248.
Hammond, K.J.
Humphries, D.J.
Crompton, L.A.
Green, C.
and
Reynolds, C.K.
2015.
Methane emissions from cattle: Estimates from short-term measurements using a GreenFeed system compared with measurements obtained using respiration chambers or sulphur hexafluoride tracer.
Animal Feed Science and Technology,
Vol. 203,
Issue. ,
p.
41.
Pickering, N.K.
Oddy, V.H.
Basarab, J.
Cammack, K.
Hayes, B.
Hegarty, R.S.
Lassen, J.
McEwan, J.C.
Miller, S.
Pinares-Patiño, C.S.
and
de Haas, Y.
2015.
Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants.
Animal,
Vol. 9,
Issue. 9,
p.
1431.
Pereira, A.B.D.
Utsumi, S.A.
Dorich, C.D.
and
Brito, A.F.
2015.
Integrating spot short-term measurements of carbon emissions and backward dietary energy partition calculations to estimate intake in lactating dairy cows fed ad libitum or restricted.
Journal of Dairy Science,
Vol. 98,
Issue. 12,
p.
8913.
Huhtanen, P.
Cabezas-Garcia, E.H.
Utsumi, S.
and
Zimmerman, S.
2015.
Comparison of methods to determine methane emissions from dairy cows in farm conditions.
Journal of Dairy Science,
Vol. 98,
Issue. 5,
p.
3394.
Dansen, O.
Pellikaan, W. F.
Hendriks, W. H.
Dijkstra, J.
Jacobs, M. P. T.
Everts, H.
and
van Doorn, D. A.
2015.
Daily methane production pattern of Welsh ponies fed a roughage diet with or without a cereal mixture1.
Journal of Animal Science,
Vol. 93,
Issue. 4,
p.
1916.
Kotsyurbenko, Oleg
and
Glagolev, Mikhail
2015.
Hydrocarbon and Lipid Microbiology Protocols.
p.
227.
Hammond, K.J.
Crompton, L.A.
Bannink, A.
Dijkstra, J.
Yáñez-Ruiz, D.R.
O’Kiely, P.
Kebreab, E.
Eugène, M.A.
Yu, Z.
Shingfield, K.J.
Schwarm, A.
Hristov, A.N.
and
Reynolds, C.K.
2016.
Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants.
Animal Feed Science and Technology,
Vol. 219,
Issue. ,
p.
13.
Patra, Amlan K.
2016.
Recent Advances in Measurement and Dietary Mitigation of Enteric Methane Emissions in Ruminants.
Frontiers in Veterinary Science,
Vol. 3,
Issue. ,
Lassen, Jan
and
Løvendahl, Peter
2016.
Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods.
Journal of Dairy Science,
Vol. 99,
Issue. 3,
p.
1959.
Manzanilla-Pech, C. I. V.
De Haas, Y.
Hayes, B. J.
Veerkamp, R. F.
Khansefid, M.
Donoghue, K. A.
Arthur, P. F.
and
Pryce, J. E.
2016.
Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle1.
Journal of Animal Science,
Vol. 94,
Issue. 10,
p.
4151.
Velazco, J.I.
Mayer, D.G.
Zimmerman, S.
and
Hegarty, R.S.
2016.
Use of short-term breath measures to estimate daily methane production by cattle.
Animal,
Vol. 10,
Issue. 1,
p.
25.
Oss, Daniela B.
Marcondes, Marcos I.
Machado, Fernanda S.
Pereira, Luiz Gustavo R.
Tomich, Thierry R.
Ribeiro, Gabriel O.
Chizzotti, Mario Luiz
Ferreira, Alexandre L.
Campos, Mariana M.
Maurício, Rogério M.
Chaves, Alex V.
and
McAllister, Tim A.
2016.
An evaluation of the face mask system based on short-term measurements compared with the sulfur hexafluoride (SF 6 ) tracer, and respiration chamber techniques for measuring CH 4 emissions.
Animal Feed Science and Technology,
Vol. 216,
Issue. ,
p.
49.
Arbre, M.
Rochette, Y.
Guyader, J.
Lascoux, C.
Gómez, L. M.
Eugène, M.
Morgavi, D. P.
Renand, G.
Doreau, M.
and
Martin, C.
2016.
Repeatability of enteric methane determinations from cattle using either the SF6 tracer technique or the GreenFeed system.
Animal Production Science,
Vol. 56,
Issue. 3,
p.
238.
Hammond, K. J.
Waghorn, G. C.
and
Hegarty, R. S.
2016.
The GreenFeed system for measurement of enteric methane emission from cattle.
Animal Production Science,
Vol. 56,
Issue. 3,
p.
181.
Difford, G.F.
Lassen, J.
and
Løvendahl, P.
2016.
Interchangeability between methane measurements in dairy cows assessed by comparing precision and agreement of two non-invasive infrared methods.
Computers and Electronics in Agriculture,
Vol. 124,
Issue. ,
p.
220.