Published online by Cambridge University Press: 01 June 2009
Two metabolism trials (experiments 1 and 2) were conducted to examine the effect of the organic S compound, sodium 3-mercapto-1-propane sulfonic acid (MPS) on feed intake, fiber digestibility, rumen fermentation and abundance of cellulolytic rumen microorganisms in cattle fed low S (<0.11%) roughages. Urea was provided in all treatments to compensate for the N deficiency (<0.6%) in the roughages. In experiment 1, steers (333 ± 9.5 kg liveweight) were fed Angleton grass (Dicanthium aristatum) supplemented with S in equivalent amounts as either MPS (6.0 g/day) or sodium sulfate (9.56 g/day). Supplementation of Angelton grass with either sulfate or MPS resulted in an apparent increase in flow of rumen microbial protein from the rumen. Sulfur supplementation did not significantly change whole tract dry matter digestibility or intake, even though sulfate and MPS supplementation was associated with an increase in the relative abundance of the fibrolytic bacteria Fibrobacter succinogenes and anaerobic rumen fungi. Ruminal sulfide levels were significantly higher in the sulfate treatment, which indicated that the bioavailability of the two S atoms in the MPS molecule may be low in the rumen. Based on this observation, experiment 2 was conducted in which twice the amount of S was provided in the form of MPS (8.0 g/day) compared with sodium sulfate (6.6 g/day) to heifers (275 ± 9 kg liveweight) fed rice straw. Supplementation with MPS compared with sulfate in experiment 2 resulted in an increase in concentration of total volatile fatty acids, and ammonia utilization without a change in feed intake or whole tract fiber digestibility even though S and N were above requirement for growing cattle in both these treatment groups. In conclusion, supplementation of an S deficient low-quality roughage diet with either MPS or sodium sulfate, in conjunction with urea N, improved rumen fermentation, which was reflected in an increase in urinary purine excretion. However, MPS appeared to have a greater effect on stimulating short-chain fatty acid production and ammonia utilization when provided at higher concentrations than sulfate. Thus, the metabolism of MPS in the rumen needs to be investigated further in comparison with inorganic forms of S as it may prove to be more effective in stimulating fermentation of roughage diets.