Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T16:00:59.573Z Has data issue: false hasContentIssue false

A multi-inverse approach for a holistic understanding of applied animal science systems

Published online by Cambridge University Press:  30 April 2020

L. M. Vargas-Villamil*
Affiliation:
Department of Animal Science, Kleberg, Texas A&M University, College Station, TX7743-2471, USA
L. O. Tedeschi
Affiliation:
Department of Animal Science, Kleberg, Texas A&M University, College Station, TX7743-2471, USA
S. Medina-Peralta
Affiliation:
Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo Periférico Norte, Tablaje Cat. 13615, Col. Chuburná Hidalgo Inn, Mérida, Yucatán97203, México
F. Izquierdo-Reyes
Affiliation:
Campus Tabasco, Colegio de Postgraduados, Apartado postal 24, Cárdenas, Tabasco86500, México
J. Navarro-Alberto
Affiliation:
Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, km 15.5 Carretera Mérida-Xmatkuil, Mérida, Yucatán, 97100, México
R. González-Garduño
Affiliation:
Unidad Regional Universitaria Sursureste, Universidad Autónoma Chapingo, Km. 7, Carretera Teapa-Vicente Guerrero, Teapa, Tabasco86800, México
*
Get access

Abstract

Technological and mathematical advances have provided opportunities to investigate new approaches for the holistic quantification of complex biological systems. One objective of these approaches, including the multi-inverse deterministic approach proposed in this paper, is to deepen the understanding of biological systems through the structural development of a useful, best-fitted inverse mechanistic model. The objective of the present work was to evaluate the capacity of a deterministic approach, that is, the multi-inverse approach (MIA), to yield meaningful quantitative nutritional information. To this end, a case study addressing the effect of diet composition on sheep weight was performed using data from a previous experiment on saccharina (a sugarcane byproduct), and an inverse deterministic model (named Paracoa) was developed. The MIA successfully revealed an increase in the final weight of sheep with an increase in the percentage of corn in the diet. Although the soluble fraction also increased with increasing corn percentage, the effective nonsoluble degradation increased fourfold, indicating that the increased weight gain resulted from the nonsoluble substrate. A profile likelihood analysis showed that the potential best-fitted model had identifiable parameters, and that the parameter relationships were affected by the type of data, number of parameters and model structure. It is necessary to apply the MIA to larger and/or more complex datasets to obtain a clearer understanding of its potential.

Type
Research Article
Copyright
© The Author(s), 2020. Published by Cambridge University Press on behalf of The Animal Consortium

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

Present address: Campus Tabasco, Colegio de Postgraduados, Apartado postal 24, Cárdenas, Tabasco, 86500, México.

References

Ashyraliyev, M, Jaeger, J and Blom, JG 2008. Parameter estimation and determinability analysis applied to Drosophila gap gene circuits. BMC Systems Biology 2, 119.CrossRefGoogle ScholarPubMed
Chihara, L and Hesterberg, T 2011. Mathematical statistics with resampling and R. John Wiley & Sons, Inc., Hoboken, NJ, USA.Google Scholar
Chis, OT, Villaverde, AF, Banga, JR and Balsa-Canto, E 2016. On the relationship between sloppiness and identifiability. Mathematical Biosciences 282, 147161.CrossRefGoogle ScholarPubMed
Doerr, HM 1996. Stella ten years later: a review of the literature. International Journal of Computers for Mathematical Learning 1, 201224.CrossRefGoogle Scholar
Dörr, A, Keller, R, Zell, A and Dräger, A 2014. SBMLSimulator: a java tool for model simulation and parameter estimation in systems biology. Computation 2, 246257.CrossRefGoogle ScholarPubMed
Elías, A, Lezcano, O, Lezcano, P, Cordero, J and Quintana, L 1990. A review on the development of a protein sugar cane enrichment technology through solid state fermentation (Saccharina). Cuban Journal of Agricultural Science 24, 113.Google Scholar
Fischer, HR 2001. Abductive reasoning as a way of worldmaking. Foundations of Science 6, 361383.CrossRefGoogle Scholar
Gelman, A, Bois, F and Jiang, J 1996. Physiological pharmacokinetic analysis using population modeling and informative prior distributions. Journal of the American Statistical Association 91, 14001412.CrossRefGoogle Scholar
Godínez-Juárez, B 2014. Evaluación de la degradación efectiva y el comportamiento productivo de ovinos de pelo alimentados con Sacchamaiz. Master’s degree thesis, Colegio de Postgraduados, Tabasco, México.Google Scholar
Godinez-Juárez, B, Vargas-Villamil, LM, González-Garduño, R, Zaldivar-Cruz, JM, Izquierdo-Reyes, F, Hernández-Mendo, O and Ramos Juárez, JA 2017. Evaluation of degradation, voluntary feed intake and productive performance of sheep fed with saccharina and corn. Ecosistemas y Recursos Agropecuarios 4, 112.Google Scholar
Guanawardena, J 2010. Models in systems biology: the parameter problem and the meanings of robustness. In Elements of computational systems biology (ed. Lodhi, HM and Muggleton, SH), pp. 128. John Wiley & Sons, Hoboken, NJ, USA.Google Scholar
Gutenkunst, RN, Waterfall, JJ, Casey, FP, Brown, KS, Myers, CR and Sethna, JP 2007a. Universally sloppy parameter sensitivities in systems biology models. PLoS Computational Biology 3, 18711878.CrossRefGoogle ScholarPubMed
Gutenkunst, RN, Casey, FP, Waterfall, JJ, Myers, CR and Sethna, JP 2007b. Extracting falsifiable predictions from sloppy models arXiv:0704.3049v1 [q-bio.QM].CrossRefGoogle Scholar
Højberg, A and Refsgaard, J 2005. Model uncertainty–parameter uncertainty versus conceptual models. Water Science and Technology 52, 177186.CrossRefGoogle ScholarPubMed
Huang, SSY, Strathe, AB, Hung, SS, Boston, RC and Fadel, JG 2012. Selenocompounds in juvenile white sturgeon: estimating absorption, disposition, and elimination of selenium using Bayesian hierarchical modeling. Aquatic Toxicology 109, 150157.CrossRefGoogle ScholarPubMed
Kennedy, J 2010. Particle swarm optimization. In Encyclopedia of machine learning (ed. Sammut, C and Webb, GI), pp. 760766. Springer, New York, NY, USA.Google Scholar
Kreutz, C, Raue, A, Kaschek, D and Timmer, J 2013. Profile likelihood in systems biology. FEBS Journal 280, 25642571.CrossRefGoogle ScholarPubMed
Kronfeld, M, Planatscher, H and Zell, A 2010. The EvA2 optimization framework. In Learning and inteligence optimization (ed. Blum, C and Battiti, R), pp. 247250. Springer, New York, NY, USA.CrossRefGoogle Scholar
Law, AM 2009. How to build valid and credible simulation models. In Proceedings of the 2009 Winter Simulation Conference, 13–16 December 2009, Austin, TX, USA, pp. 24–33.CrossRefGoogle Scholar
Li, P and Vu, QD 2013. Identification of parameter correlations for parameter estimation in dynamic biological models. BMC System Biology 7, 112.CrossRefGoogle ScholarPubMed
Maiwald, T and Timmer, J 2008. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics 24, 20372043.CrossRefGoogle ScholarPubMed
Mendes, P, Hoops, S, Sahle, S, Gauges, R, Dada, J and Kummer, U 2009. Computational modeling of biochemical networks using COPASI. In Methods in molecular biology, systems biology (ed. Maly, I), pp. 1759. Springer, New York, NY, USA.Google Scholar
Muñoz-Tamayo, R, Puillet, L, Daniel, JB, Sauvant, D, Martin, O, Taghipoor, M and Blavy, P 2017. Review: to be or not to be an identifiable model. Is this a relevant question in animal science modelling? Animal 12, 701712.CrossRefGoogle ScholarPubMed
Overmars, KP, de Groot, WT and Huigen, MG 2007. Comparing inductive and deductive modeling of land use decisions: principles, a model and an illustration from the Philippines. Human Ecology, 35, 439452.CrossRefGoogle Scholar
Preston, T 1977. Nutritive value of sugar cane for ruminants. Tropical Animal Production 2, 125142.Google Scholar
Ramos, J, Elías, A and Herrera, F 2006. Processes for production of energy-protein feed for animals. Effect of four energy sources on solid state fermentation of sugarcane. Cuban Journal of Agricultural Science 40, 4753.Google Scholar
Raue, A, Kreutz, C, Maiwald, T, Bachmann, J, Schilling, M, Klingmüller, U and Timmer, J 2009. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25, 19231929.CrossRefGoogle ScholarPubMed
Reed, KF, Arhonditsis, GB, France, J and Kebreab, E 2016. Technical note: Bayesian calibration of dynamic ruminant nutrition models. Journal of Dairy Science 99, 63626370.CrossRefGoogle ScholarPubMed
Ruiz, M, Ruiz, J and Torres, V 2005. Efecto del polvo de arroz en el consumo y la digestibilidad de raciones integrales basadas en saccharina rústica para ovinos. Revista Cubana de Ciencia Agrícola 39, 575580.Google Scholar
Schaber, J 2012. Easy parameter identifiability analysis with COPASI. BioSystems 110, 183185.CrossRefGoogle ScholarPubMed
StatPoint 2007. STATGRAPHICS Centurion XV version 15.2.06. Retrieved on 19 July 2019 from http://www.statgraphics.com.Google Scholar
Tedeschi, LO 2006. Assessment of the adequacy of mathematical models. Agricultural Systems 89, 225247.CrossRefGoogle Scholar
Tedeschi, LO and Fox, DG 2018. The ruminant nutrition system: an applied model for predicting nutrient requirements and feed utilization in ruminants. XanEdu, Acton, MA, USA.Google Scholar
Vargas-Villamil, L and Tedeschi, L 2013. Developing a model frame for evaluation of sacchamaiz using the multi-inverse approach (MIA). Retrieved on 20 November 2019 from https://forio.com/simulate/luis/paracoasm/overview/Google Scholar
Vargas-Villamil, L and Tedeschi, L 2014. Potential integration of multi-fitting, inverse problem and mechanistic modelling approaches to applied research in animal science: a review. Animal Production Science 54, 19051913.CrossRefGoogle Scholar
Vargas-Villamil, L, Tedeschi, L, Godínez-Juárez, B, Medina-Peralta, S, Izquierdo-Reyes, F, Navarro-Alberto, J and González-Garduño, R 2019. A novel multi-inverse approach for a holistic understanding of applied animal science system. Advances in Animal Bioscience 10, 298.Google Scholar
Wang, Y, Cao, P, Wang, L, Zhao, Z, Chen, Y and Yang, Y 2017. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Applied Microbiology and Biotechnology 101, 37173728.CrossRefGoogle ScholarPubMed
Young, PC 2002 Data-based mechanistic and top-down modelling. In Proceedings of the First Biennial Meeting of the International Environmental Modelling & Software Society, Vol I, 24–27 June 2002, Lugano, Suisse.CrossRefGoogle Scholar
Young, PC 2006. The data-based mechanistic approach to the modelling, forecasting and control of environmental systems. Annual Reviews in Control 30, 169182.CrossRefGoogle Scholar
Zar, JH 2010. Biostatistical analysis. Prentice-Hall, Upper Saddle River, NJ, USA.Google Scholar
Supplementary material: File

Vargas-Villamil et al. supplementary material

Vargas-Villamil et al. supplementary material 1

Download Vargas-Villamil et al. supplementary material(File)
File 429.7 KB
Supplementary material: File

Vargas-Villamil et al. supplementary material

Vargas-Villamil et al. supplementary material 2

Download Vargas-Villamil et al. supplementary material(File)
File 689.8 KB
Supplementary material: File

Vargas-Villamil et al. supplementary material

Vargas-Villamil et al. supplementary material 3

Download Vargas-Villamil et al. supplementary material(File)
File 48.3 KB
Supplementary material: File

Vargas-Villamil et al. supplementary material

Vargas-Villamil et al. supplementary material 4

Download Vargas-Villamil et al. supplementary material(File)
File 7.6 KB