Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T07:21:59.890Z Has data issue: false hasContentIssue false

Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices

Published online by Cambridge University Press:  22 March 2010

C. Rigolot*
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France IFIP Institut du Porc, F-35651 Le Rheu, France INRA, UMR1080 Production du Lait, F-35000 Rennes, France
S. Espagnol
Affiliation:
IFIP Institut du Porc, F-35651 Le Rheu, France
P. Robin
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France
M. Hassouna
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France
F. Béline
Affiliation:
CEMAGREF, Unité de Recherche Gestion environnementale et traitement biologique des déchets, 17, av. de cucillé, CS 64427, F-35044 Rennes Cedex, France
J. M. Paillat
Affiliation:
INRA, UMR1069, Soil Agro and hydroSystem, F-35000 Rennes, France CIRAD, UpR Recyclage et risque, F-34398 Montpellier cedex 05, France
J.-Y. Dourmad
Affiliation:
INRA, UMR1079 Systèmes d’Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France
*
Get access

Abstract

A model has been developed to predict pig manure evolution (mass, dry and organic matter, N, P, K, Cu and Zn contents) and related gaseous emissions (methane (CH4), nitrous oxide (N2O) and ammonia (NH3)) from pig excreta up to manure stored before spreading. This model forms part of a more comprehensive model including the prediction of pig excretion. The model simulates contrasted management systems, including different options for housing (slatted floor or deep litter), outside storage of manure and treatment (anaerobic digestion, biological N removal processes, slurry composting (SC) with straw and solid manure composting). Farmer practices and climatic conditions, which have significant effects on gaseous emissions within each option, have also been identified. The quantification of their effects was based on expert judgement from literature and local experiments, relations from mechanistic models or simple emission factors, depending on existing knowledge. The model helps to identify relative advantages and weaknesses for each system. For example, deep-litter with standard management practices is associated with high-greenhouse gas (GHG) production (+125% compared to slatted floor) and SC on straw is associated with high NH3 emission (+15% compared to slatted floor). Another important result from model building and first simulations is that farmer practices and the climate induce an intra-system (for a given infrastructure) variability of NH3 and GHG emissions nearly as high as inter-system variability. For example, in deep-litter housing systems, NH3 and N2O emissions from animal housing may vary between 6% and 53%, and between 1% and 19% of total N excreted, respectively. Thus, the model could be useful to identify and quantify improvement margins on farms, more precisely or more easily than current methodologies.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarnink, AJA 1997. Ammonia emission from houses for growing pigs as affected by pen design, indoor climate and behaviour. PhD, Wageningen University, The Netherlands.Google Scholar
Aarnink, AJA, Elzing, A 1998. Dynamic model for ammonia volatilisation in housing with partially slatted floors, for fattening pigs. Livestock Production Science 53, 153169.CrossRefGoogle Scholar
Abd El Kader, N, Robin, P, Paillat, JM, Leterme, P 2007. Turning, compacting and the addition of water as factors affecting gaseous emissions in farm manure composting. Bioresource Technology 98, 26192628.Google Scholar
Amon, B, Kryvoruchko, V, Fröhlich, M, Amon, T, Pöllinger, A, Mösenbacher, I, Hausleitner, A 2007. Ammonia and greenhouse gas emissions from a straw flow system for fattening pigs: housing and manure storage. Livestock Science 112, 199207.CrossRefGoogle Scholar
Béline, F, Daumer, ML, Guiziou, F 2004. Biological aerobic treatment of pig slurry in France: nutrients removal efficiency and separation performances. Transactions of the ASAE 47, pp. 857864. American Society of Agricultural and Biological Engineers, Saint Joseph, MI, USA.Google Scholar
Béline, F, Boursier, H, Daumer, ML, Guiziou, F, Paul, E 2007. Modelling of biological processes during aerobic treatment of piggery wastewater aiming at process optimisation. Bioresource Technology 98, 32983308.CrossRefGoogle ScholarPubMed
Berthiaume, P, Bigras-Poulin, M, Rousseau, AN 2005. Dynamic simulation model of nitrogen fluxes in pig housing and outdoor storage facilities. Biosystems Engineering 92, 453467.CrossRefGoogle Scholar
Burton, CH, Turner, C 2003. Manure management. Treatment strategie for sustainable agriculture, 2nd edition. Silsoe Research Institute, Bedford, UK.Google Scholar
Chardon, X, Rigolot, C, Baratte, C, Le Gall, A, Espagnol, S, Martin-Clouaire, R, Rellier, JP, Raison, C, Poupa, JC, Faverdin, P 2007. MELODIE: a whole-farm model to study the dynamics of nutrients in integrated dairy and pig farms. In MODSIM 2007 International Congress on Modelling and Simulation (ed. L Oxley and D Kulasiri), pp. 16381645. Modelling and Simulation Society of Australia and New Zealand, New Zealand.Google Scholar
Comité d’Orientation pour des Pratiques agricoles respectueuses de l’Environnement (CORPEN) (Pig Commission) 2003. Estimation des rejets d’azote – phosphore – potassium – cuivre – zinc des porcs (ed. Corpen). Paris, France.Google Scholar
Dämmgen, U, Webb, J 2006. The development of the EMEP/CORINAIR Guidebook with respect to the emissions of different nitrogen and carbon species from animal production. Agriculture, Ecosystems & Environment 112, 241248.CrossRefGoogle Scholar
De Bode, M 1991. Odour and ammonia emission from manure storage. In Odour and ammonia emissions from livestock farming (ed. VC Neilsen, JH Voorburg and P L’Hermite), pp. 5966. Elsevier Applied Science, London, UK.Google Scholar
Dourmad, JY, Jondreville, C 2008. Improvement of balance of trace elements in pig farming systems. In Trace elements in animal production systems (ed. P Schlegel, S Durosoy and A Jongbloed), pp. 139142. Wageningen Academic Publishers, Wageningen, The Netherlands.Google Scholar
Dourmad, JY, Guingand, N, Latimier, P, Sève, B 1999. Nitrogen and phosphorus consumption, utilisation and losses in pig production: France. Livestock Production Science 58, 199211.CrossRefGoogle Scholar
Dourmad, JY, Moset-Hernandez, V, Espagnol, E, Hassouna, M, Rigolot, C 2008. Modélisation dynamique de l’émission et de la concentration d’ammoniac dans un bâtiment d’engraissement de porc. Journées de la Recherche Porcine en France 40, 267268.Google Scholar
Espagnol, E, Hassouna, M, Robin, P, Levasseur, P, Paillat, JM 2006. Emissions gazeuses de NH3, N2O, CH4 lors du stockage de fumier de porc provenant d’une litière accumulée: effet du retournement. Journées de la Recherche Porcine en France 38, 4148.Google Scholar
Freibauer, A 2003. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. European Journal of Agronomy 19, 135160.CrossRefGoogle Scholar
Fukumoto, Y, Osada, T, Hanajima, D, Haga, K 2003. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration – effect of compost pile scale. Bioresource Technology 89, 109114.CrossRefGoogle ScholarPubMed
Granier, R, Guingand, N, Massabie, P 1996. Influence du niveau d’hygrométrie, de la température et du taux de renouvellement de l’air sur l’évolution des teneurs en ammoniac. Journées de la Recherche Porcine en France 28, 209216.Google Scholar
Groenestein, CM, Van Faassen, HG 1996. Volatilisation of ammonia, nitrous oxide and nitric oxide in deep-litter systems for fattening pig. Journal of Agricultural Engineering Research 65, 269274.CrossRefGoogle Scholar
Guingand, N 1996. L’ammoniac en porcherie. Institut Technique du Porc, Paris, France.Google Scholar
Guingand, N 2000. Influence de la vidange des préfosses sur l’émission d’ammoniac et d’odeurs par les porcheries d’engraissement. Résultats préliminaires. Journées de la Recherche Porcine en France 32, 8388.Google Scholar
Guingand, N, Granier, R 2001. Comparaison caillebotis partiel et caillebotis intégral en engraissement, effet sur les performances zootechniques et sur l’émission d’ammoniac. Journées de la Recherche Porcine en France 33, 3136.Google Scholar
Hassouna, M, Robin, P, Texier, C, Ramonet, Y 2005. NH3, N2O and CH4 emission factors from pig-on-litter systems. International Workshop on Green Pork Production “Porcherie Verte”, a research Initiative on environment-friendly pig production, pp. 121–122. Paris, France.Google Scholar
Hoeksma, P, Verdoes, N, Oosthoek, J, Voermans, JAM 1992. Reduction of ammonia volatilisation from pig houses using aerated slurry as recirculation liquid. Livestock Production Science 31, 121132.CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change IPCC 2006. 2006 IPCC Guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Program (ed. HS Eggleston, L Buendia, K Miwa, T Ngara and K Tanabe). IGES, Japan.Google Scholar
Jungbluth, T, Hartung, E, Brose, G 2001. Greenhouse gas emissions from animal houses and manure stores. Nutrient Cycling in Agroecosystems 60, 133145.CrossRefGoogle Scholar
Kaufmann, R 1997. Litière biomaîtrisée pour porc à l’engrais. Amélioration de la technique et valorisation de données importantes pour l’environnement. Journées de la Recherche Porcine en France 29, 311318.Google Scholar
Kermarrec, C 1999. Bilan et transformation de l’azote en élevage intensif de porc sur litière. PhD, Rennes 1 University, France.Google Scholar
Lesguiller, F, Gouin, R, Guiziou, F, Orain, B 1995. L’élevage de porc sur litières biomaîtrisées. Contribution au dossier environnemental par l’évaluation des rejets. Bilan des éléments azotés et minéraux des litières. Journées de la Recherche Porcine en France 27, 343350.Google Scholar
Levasseur, P, Le Bris, B, Gorius, H, Le Cozler, Y 2003. Traitement biologique par boues activées et compostage du lisier sur paille: Enquête en élevage. Techni Porc 26, 511.Google Scholar
Loyon, L, Guiziou, F, Béline, F, Peu, P 2007. Gazeous emissions (NH3, N2O, CH4 and CO2) from the aerobic treatment of piggery slurry – Comparison with a conventional storage system. Biosystems Engineering 97, 472480.CrossRefGoogle Scholar
Misselbrook, TH, Van Der Weerden, TJ, Pain, BF, Jarvis, SC, Chambers, BJ, Smith, KA, Phillips, VR, Demmers, TGM 2000. Ammonia emission factors from UK agriculture. Atmospheric Environment 34, 871880.CrossRefGoogle Scholar
Monteny, GJ, Groenestein, CM, Hilhorst, MA 2001. Interactions and coupling between emissions of methane and nitrous oxide from animal husbandry. Nutrient Cycling in Agroecosystems 60, 123132.CrossRefGoogle Scholar
Nicholson, RJ, Webb, J, Moore, A 2002. IT – Information Technology and the Human Interface: a review of the environmental effects of different livestock manure storage systems, and a suggested procedure for assigning environmental ratings. Biosystems Engineering 81, 363377.CrossRefGoogle Scholar
Nicks, B, Désiron, A, Canart, B 1995. Bilan environnemental et zootechnique de l’engraissement de quatre lots de porc sur litière biomaîtrisée. Journées de la Recherche Porcine en France 27, 337342.Google Scholar
Nicks, B, Laitat, M, Desiron, A, Vandenheede, M, Canart, B 2002. Emissions d’ammoniac, de protoxyde d’azote, de méthane, de gaz carbonique et de vapeur d’eau lors d’élevage de porcelets sevrés sur litière accumulée de paille et de sciure. Journées de la Recherche Porcine en France 34, 149154.Google Scholar
National Research Council (NRC) 2003. Air emissions from animal feeding operations: current knowledge, future needs. Final Report. National Academies Press, National Research Council of the National Academies, Washington DC, USA.Google Scholar
Olesen, JE, Sommer, SG 1993. Modelling effects of wind speed and surface cover on ammonia volatilisation from stored pig slurry. Atmospheric Environment, Part A, General topics 27, 25672574.CrossRefGoogle Scholar
Paillat, JM, Robin, P, Hassouna, M, Callarec, J, Toularastel, P 2005a. Environmental assessment of composting pig slurry with wheat straw based on the Guernévez® process. International Workshop on Pork Production “Porcherie Verte”, A research initiative on environment-friendly pig production, pp. 99–103. Paris, France.Google Scholar
Paillat, JM, Robin, P, Hassouna, M, Leterme, P 2005b. Effet du compostage d’effluents porcins sur les émissions gazeuses et les teneurs en éléments polluants. Rapport final convention ADEME-INRA 0375C0077, GIS Porcherie Verte, UMR SAS, Rennes, France.Google Scholar
Paillat, JM, Robin, P, Hassouna, M, Leterme, P 2005c. Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmospheric Environment 39, 68336842.CrossRefGoogle Scholar
Pain, BF, Van der Weerden, TJ, Chambers, BJ, Phillips, VT, and Jarvis, SC 1998. A new inventory for ammonia emissions from UK agriculture. Atmospheric Environment 32, 309313.CrossRefGoogle Scholar
Pel, R, Oldenhuis, R, Brand, W, Vos, A, Gottschal, JC, Zwart, KB 1997. Stable-isotope analysis of a combined nitrification-denitrification sustained by thermophilic methanotrophs under low-oxygen conditions. Applied and Environmental Microbiology 63, 474481.CrossRefGoogle ScholarPubMed
Pelletier, F, Godbout, S, Larouche, JP, Lemay, S, Marquis, A 2006. Ammonia emissions from swine manure storage tank. Technology for recycling of manure and organic residues in a whole-farm perspective, 2 vol., 12th Ramiran International conference. DIAS report Plant production 123, 249–252.Google Scholar
Petersen, SO, Lind, AM, Sommer, SG 1998. Nitrogen and organic matter losses during storage of cattle and pig manure. Journal of Agricultural Science 130, 6979.CrossRefGoogle Scholar
Petersen, SO, Sommer, SG, Béline, F, Burton, C, Dach, J, Dourmad, JY, Leip, A, Misselbrook, TH, Nicholson, F, Poulsen, HD, Provolo, G, Sørensen, P, Vinneras, B, Weiske, A, Bernal, MP, Böhm, R, Juhász, C, Mihelic, R 2007. Recycling of livestock manure in a whole-farm perspective. Livestock Science 112, 180191.CrossRefGoogle Scholar
Ramonet, Y, Robin, R 2002. L’engraissement de porcs sur litière de particule de bois ou de sciure en couche fine. Journées de la Recherche Porcine en France 34, 143148.Google Scholar
Rigolot, C, Espagnol, S, Pomar, C, Dourmad, JY 2010. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part I: animal excretion and enteric CH4, effect of feeding and performance (in press).CrossRefGoogle Scholar
Robin, P, de Oliveira, R, Kermarrec, C 1999. Production d’ammoniac, de protoxyde d’azote et d’eau par différentes litières de porc durant la phase de croissance. Journées de la Recherche Porcine en France 31, 111116.Google Scholar
Sole-Mauri, F, Illa, J, Magrı, A, Prenafeta-Boldu, FX, Flotats, X 2007. An integrated biochemical and physical model for the composting process. Bioresource Technology 98, 32783293.CrossRefGoogle ScholarPubMed
Sommer, SG, Petersen, SO, Moller, HB 2004. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems 69, 143154.CrossRefGoogle Scholar
Steinfeld, H, Gerber, P, Wassenaar, T, Castel, V, Rosales, M, de Haan, C 2006. Livestock’s long shadow: environmental issues and options. Food and Agriculture Organisation of the United Nations, Rome, Italy.Google Scholar
Texier, C, Levasseur, P 2001. Compostage des déjections des porcs à l’engrais élevés sur différents déchets ligneux: sciure, copeaux ou écorce. Techni Porc 24, 2330.Google Scholar
Texier, C, Levasseur, P, Vaudelet, JC 2000. Remplacement de la paille par de la sciure ou des copeaux de bois en porcherie d’engraissement. Influence sur le compostage des litières. Journées de la Recherche Porcine en France 32, 7782.Google Scholar
Vedrenne, F 2006. Etude des processus de degradation anaérobie et de production de méthane au cours du stockage des lisiers. PhD, Rennes 1 University, France.Google Scholar
Voermans, JAM, van Poppel, F 1993. Scraper systems in pig houses. International livestock environmental symposium, pp. 651–656. Coventry, UK.Google Scholar