Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T16:51:21.039Z Has data issue: false hasContentIssue false

Expression profiles of genes regulating dairy cow fertility: recent findings, ongoing activities and future possibilities*

Published online by Cambridge University Press:  01 August 2008

B. Beerda*
Affiliation:
Animal Breeding and Genomics Centre, Animal Sciences Group of Wageningen UR, 8200 AB Lelystad, The Netherlands
J. Wyszynska-Koko
Affiliation:
Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzebiec, 05-552 Wolka Kosowska, Poland
M. F. W. te Pas
Affiliation:
Animal Breeding and Genomics Centre, Animal Sciences Group of Wageningen UR, 8200 AB Lelystad, The Netherlands
A. A. C. de Wit
Affiliation:
Animal Breeding and Genomics Centre, Animal Sciences Group of Wageningen UR, 8200 AB Lelystad, The Netherlands
R. F. Veerkamp
Affiliation:
Animal Breeding and Genomics Centre, Animal Sciences Group of Wageningen UR, 8200 AB Lelystad, The Netherlands
Get access

Abstract

Subfertility has negative effects for dairy farm profitability, animal welfare and sustainability of animal production. Increasing herd sizes and economic pressures restrict the amount of time that farmers can spend on counteractive management. Genetic improvement will become increasingly important to restore reproductive performance. Complementary to traditional breeding value estimation procedures, genomic selection based on genome-wide information will become more widely applied. Functional genomics, including transcriptomics (gene expression profiling), produces the information to understand the consequences of selection as it helps to unravel physiological mechanisms underlying female fertility traits. Insight into the latter is needed to develop new effective management strategies to combat subfertility. Here, the importance of functional genomics for dairy cow reproduction so far and in the near future is evaluated. Recent gene profiling studies in the field of dairy cow fertility are reviewed and new data are presented on genes that are expressed in the brains of dairy cows and that are involved in dairy cow oestrus (behaviour). Fast-developing new research areas in the field of functional genomics, such as epigenetics, RNA interference, variable copy numbers and nutrigenomics, are discussed including their promising future value for dairy cow fertility.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This invited paper was presented at BSAS meeting ‘Fertility in Dairy Cows – bridging the gaps’ 30-31 August 2007, Liverpool Hope University.

References

Afman, L, Muller, M 2006. Nutrigenomics: from molecular nutrition to prevention of disease. Journal of the American Dietetic Association 106, 569576.Google Scholar
Allegrucci, C, Thurston, A, Lucas, E, Young, L 2005. Epigenetics and the germline. Reproduction 129, 137149.Google Scholar
Andersen-Ranberg, IM, Klemetsdal, G, Heringstad, B, Steine, T 2005. Heritabilities, genetic correlations, and genetic change for female fertility and protein yield in Norwegian dairy cattle. Journal of Dairy Science 88, 348355.CrossRefGoogle ScholarPubMed
Bauersachs, S, Blum, H, Mallok, S, Wenigerkind, H, Rief, S, Prelle, K, Wolf, E 2003. Regulation of ipsilateral and contralateral bovine oviduct epithelial cell function in the postovulation period: a transcriptomics approach. Biology of Reproduction 68, 11701177.CrossRefGoogle ScholarPubMed
Bauersachs, S, Rehfeld, S, Ulbrich, SE, Mallok, S, Prelle, K, Wenigerkind, H, Einspanier, R, Blum, H, Wolf, E 2004. Monitoring gene expression changes in bovine oviduct epithelial cells during the oestrous cycle. Journal of Molecular Endocrinology 32, 449466.CrossRefGoogle ScholarPubMed
Bauersachs, S, Ulbrich, SE, Gross, K, Schmidt, SEM, Meyer, HHD, Einspanier, R, Wenigerkind, H, Vermehren, M, Blum, H, Sinowatz, F, Wolf, E 2005. Gene expression profiling of bovine endometrium during the oestrous cycle: detection of molecular pathways involved in functional changes. Journal of Molecular Endocrinology 34, 889908.Google Scholar
Beaudeau, F, Seegers, H, Ducrocq, V, Fourichon, C, Bareille, N 2000. Effect of health disorders on culling in dairy cows: a review and a critical discussion. Annales de Zootechnie 49, 293311.CrossRefGoogle Scholar
Beerda B and Veerkamp RF 2006. Functional genomics of female reproduction. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, August 13–18, 2006, Belo Horizonte, MG, Brazil, Communication no. 11–10.Google Scholar
Capetanaki, Y 2002. Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends in Cardiovascular Medicine 12, 339348.Google Scholar
Casey, OM, Morris, DG, Powell, R, Sreenan, JM, Fitzpatrick, R 2005. Analysis of gene expression in non-regressed and regressed bovine corpus luteum tissue using a customized ovarian cDNA array. Theriogenology 64, 19631976.CrossRefGoogle ScholarPubMed
Corcoran, D, Fair, T, Park, S, Rizos, D, Patel, OV, Smith, GW, Coussens, PM, Ireland, JJ, Boland, MP, Evans, AC, Lonergan, P 2006. Suppressed expression of genes involved in transcription and translation in in vitro compared with in vivo cultured bovine embryos. Reproduction 131, 651660.Google Scholar
Cross, JC, Werb, Z, Fisher, SJ 1994. Implantation and the placenta: key pieces of the development puzzle. Science 266, 15081518.Google Scholar
Dalbiès-Tran, R, Mermillod, P 2003. Use of heterologous complementary DNA array screening to analyze bovine oocyte transcriptome and its evolution during in vitro maturation. Biology of Reproduction 68, 252261.Google Scholar
Dawson, KA 2006. Nutrigenomics: feeding the genes for improved fertility. Animal Reproduction Science 96, 312322.CrossRefGoogle ScholarPubMed
Denning, C, Priddle, H 2003. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction 126, 111.CrossRefGoogle ScholarPubMed
El-Halawany, N, Ponsuksili, S, Wimmers, K, Gilles, M, Tesfaye, D, Schellander, K 2004. Quantitative expression analysis of blastocyst-derived gene transcripts in preimplantation developmental stages of in vitro-produced bovine embryos using real-time polymerase chain reaction technology. Reproduction, Fertility, and Development 16, 753762.CrossRefGoogle ScholarPubMed
Fan, JB, Chee, MS, Gunderson, KL 2006. Highly parallel genomic assays. Nature Reviews. Genetics 7, 632644.CrossRefGoogle ScholarPubMed
Flint, APF 2006. Dairy cow fertility: an inherited disease. Cattle Practice 14, 2932.Google Scholar
Fojo, T 2006. Can mutations in gamma-actin modulate the toxicity of microtubule targeting agents? Journal of the National Cancer Institute 98, 13451347.CrossRefGoogle ScholarPubMed
Fountoulakis, M, Soumaka, E, Rapti, K, Mavroidis, M, Tsangaris, G, Maris, A, Weisleder, N, Capetanaki, Y 2005. Alterations in the heart mitochondrial proteome in a desmin null heart failure model. Journal of Molecular and Cellular Cardiology 38, 461474.CrossRefGoogle Scholar
Fowden, AL, Sibley, C, Reik, W, Constancia, M 2006. Imprinted genes, placental development and fetal growth. Hormone Research 65 (Suppl. 3), 4957.Google Scholar
Frye, CA, Walf, AA, Sumida, K 2004. Progestins’ actions in the VTA to facilitate lordosis involve dopamine-like type 1 and 2 receptors. Pharmacology, Biochemistry and Behavior 78, 405418.CrossRefGoogle Scholar
Gebert, C, Wrenzycki, C, Herrmann, D, Groger, D, Reinhardt, R, Hajkova, P, Lucas-Hahn, A, Carnwath, J, Lehrach, H, Niemann, H 2006. The bovine IGF2 gene is differentially methylated in oocyte and sperm DNA. Genomics 88, 222229.CrossRefGoogle ScholarPubMed
Hall, JG, Branton, C, Stone, EJ 1959. Estrus, estrous cycles, ovulation time, time of service, and fertility of dairy cattle in Louisiana. Journal of Dairy Science 42, 10861094.Google Scholar
Hashizume, K, Ushizawa, K, Patel, OV, Kizaki, K, Imai, K, Yamada, O, Nakano, H, Takahashi, T 2007. Gene expression and maintenance of pregnancy in bovine: roles of trophoblastic binucleate cell-specific molecules. Reproduction, Fertility, and Development 19, 7990.Google Scholar
Hastings, N, Donn, S, Derecka, K, Flint, AP, Woolliams, JA 2006. Polymorphisms within the coding region of the bovine luteinizing hormone receptor gene and their association with fertility traits. Animal Genetics 37, 583585.Google Scholar
Hiendleder, S, Bauersachs, S, Boulesteix, A, Blum, H, Arnold, GJ, Frohlich, T, Wolf, E 2005. Functional genomics: tools for improving farm animal health and welfare. Revue Scientifique et Technique – Office International des Epizooties 24, 355377.CrossRefGoogle ScholarPubMed
Hofmann, A, Zakhartchenko, V, Weppert, M, Sebald, H, Wenigerkind, H, Brem, G, Wolf, E, Pfeifer, A 2004. Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction 71, 405409.CrossRefGoogle ScholarPubMed
Huirne RBM, Staatkamp HW and Bergevoet RHM 2002. Economic analysis of common health problems in dairy cattle. Proceedings of the 12th World Buiatrics Congress (ed. M Kaske, H Scholz and M Höltershinken), August 18–23, 2002, Hannover, Germany, pp. 420–431.Google Scholar
Hunter, RHF, Greve, T 1997. Could artificial insemination of cattle be more fruitful? Penalties associated with ageing eggs. Reproduction in Domestic Animals 32, 137141.CrossRefGoogle Scholar
International Human Genome Sequencing Consortium 2001. Initial sequencing and analysis of the human genome. Nature 409, 860921.Google Scholar
Ishiwata, H, Katsuma, S, Kizaki, K, Patel, OV, Nakano, H, Takahashi, T, Imai, K, Hirasawa, A, Shiojima, S, Ikawa, H, Suzuki, Y, Tsujimoto, G, Izaike, Y, Todoroki, J, Hashizume, K 2003. Characterization of gene expression profiles in early bovine pregnancy using a custom cDNA microarray. Molecular Reproduction and Development 65, 918.Google Scholar
Jablonka, E, Lamb, RM 1998. Epigenetic inheritance in evolution. Journal of Evolutionary Biology 11, 159183.Google Scholar
Jaenisch, R, Bird, A 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33 (Suppl.), 245254.Google Scholar
Jamrozik, J, Fatehi, J, Kistemaker, GJ, Schaeffer, LR 2005. Estimates of genetic parameters for Canadian Holstein female reproduction traits. Journal of Dairy Science 88, 21992208.Google Scholar
Jones, PA, Takai, D 2001. The role of DNA methylation in mammalian epigenetics. Science 293, 10681070.Google Scholar
Jorritsma, H, Jorritsma, R 2000. An overview of fertility statistics and milk production data of 15 dairy operations in southeast Friesland. Tijdschrift voor Diergeneeskunde 125, 180184.Google Scholar
Kaksonen, M, Toret, CP, Drubin, DG 2006. Harnessing actin dynamics for clathrin-mediated endocytosis. Nature Reviews. Molecular Cell Biology 7, 404414.Google Scholar
Kappes, SM, Bennett, GL, Keele, JW, Echternkamp, SE, Gregory, KE, Thallman, RM 2000. Initial results of genomic scans for ovulation rate in a cattle population selected for increased twinning rate. Journal of Animal Science 78, 30533059.Google Scholar
Kehrer-Sawatzki, H, Cooper, DN 2007. Understanding the recent evolution of the human genome: Insights from human–chimpanzee genome comparisons. Human Mutation 28, 99130.Google Scholar
Khatkar, MS, Thomson, PC, Tammen, I, Raadsma, HW 2004. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genetics, Selection, Evolution 36, 163190.CrossRefGoogle ScholarPubMed
Klein, C, Bauersachs, S, Ulbrich, SE, Einspanier, R, Meyer, HHD, Schmidt, SEM, Reichenbach, HD, Vermehren, M, Sinowatz, F, Blum, H, Wolf, E 2006. Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biology of Reproduction 74, 253264.CrossRefGoogle ScholarPubMed
Knijn, HM, Wrenzycki, C, Hendriksen, PJM, Vos, P, Zeinstra, EC, van der Weijden, GC, Niemann, H, Dieleman, SJ 2005. In vitro and in vivo culture effects on mRNA expression of genes involved in metabolism and apoptosis in bovine embryos. Reproduction, Fertility, and Development 17, 775784.CrossRefGoogle ScholarPubMed
Lee, JA, Lupski, JR 2006. Genomic rearrangements and gene copy-number alterations as a cause of nervous system disorders. Neuron 52, 103121.Google Scholar
Lehmann, C, Naumann, WW 2005. Axon pathfinding and the floor plate factor Reissner’s substance in wildtype, cyclops and one-eyed pinhead mutants of Danio rerio. Brain Research. Developmental Brain Research 154, 114.CrossRefGoogle ScholarPubMed
Lew, AE, Jackson, LA, Bellgard, MI 2005. Comparative genomic analysis of non-coding sequences and the application of RNA interference tools for bovine functional genomics. Australian Journal of Experimental Agriculture 45, 9951010.Google Scholar
Lewin, HA 2003. The future of cattle genomics: the beef is here. Cytogenetic and Genome Research 102, 1015.Google Scholar
Li, E 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nature Reviews. Genetics 3, 662673.Google Scholar
Liefers, SC, Veerkamp, RF, Te Pas, M, Chilliard, Y, Van der Lende, T 2005. Genetics and physiology of leptin in periparturient dairy cows. Domestic Animal Endocrinology 29, 227238.CrossRefGoogle ScholarPubMed
Lien, S, Karlsen, A, Klemetsdal, G, Vage, DI, Olsaker, I, Klungland, H, Aasland, M, Heringstad, B, Ruane, J, Gomez-Raya, L 2000. A primary screen of the bovine genome for quantitative trait loci affecting twinning rate. Mammalian Genome 11, 877882.CrossRefGoogle ScholarPubMed
Lingenfelter, BM, Dailey, RA, Inskeep, EK, Vernon, MW, Poole, DH, Rhinehart, JD, Yao, J 2007. Changes of maternal transcripts in oocytes from persistent follicles in cattle. Molecular Reproduction and Development 74, 265272.CrossRefGoogle ScholarPubMed
Luo, W, Peterson, A, Garcia, BA, Coombs, G, Kofahl, B, Heinrich, R, Shabanowitz, J, Hunt, DF, Yost, HJ, Virshup, DM 2007. Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO Journal 26, 15111521.Google Scholar
Mamo, S, Sargent, CA, Affara, NA, Tesfaye, D, El-Halawany, N, Wimmers, K, Gilles, M, Schellander, K, Ponsuksili, S 2006. Transcript profiles of some developmentally important genes detected in bovine oocytes and in vitro-produced blastocysts using RNA amplification and cDNA microarrays. Reproduction in Domestic Animals 41, 527534.Google Scholar
Mandard, S, Muller, M, Kersten, S 2004. Peroxisome proliferator-activated receptor alpha target genes. Cellular and Molecular Life Sciences 61, 393416.Google Scholar
Marsh, DJ, Weingarth, DT, Novi, DE, Chen, HY, Trumbauer, ME, Chen, AS, Guan, XM, Jiang, MM, Feng, Y, Camacho, RE, Shen, Z, Frazier, EG, Yu, H, Metzger, JM, Kuca, SJ, Shearman, LP, Gopal-Truter, S, MacNeil, DJ, Strack, AM, MacIntyre, DE, Van der Ploeg, LHT, Qian, S 2002. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proceedings of the National Academy of Sciences of the United States of America 99, 32403245.Google Scholar
Meiniel, O, Meiniel, A 2007. The complex multidomain organization of SCO-spondin protein is highly conserved in mammals. Brain Research Reviews 53, 321327.Google Scholar
Meister, G, Tuschl, T 2004. Mechanisms of gene silencing by doublestranded RNA. Nature 431, 343349.Google Scholar
Meuwissen, THE, Hayes, BJ, Goddard, ME 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 18191829.Google Scholar
Meuwissen, THE, Karlsen, A, Lien, S, Olsaker, I, Goddard, ME 2002. Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161, 373379.Google Scholar
Miglior, F, Muir, BL, Van Doormaal, BJ 2005. Selection indices in Holstein cattle of various countries. Journal of Dairy Science 88, 12551263 (erratum vol. 88, p. 1613).Google Scholar
Miles, LA, Andronicos, NM, Baik, N, Parmer, RJ 2006. Cell-surface actin binds plasminogen and modulates neurotransmitter release from catecholaminergic cells. Journal of Neuroscience 26, 1301713024.Google Scholar
Miozzo, M, Simoni, G 2002. The role of imprinted genes in fetal growth. Biology of the Neonate 81, 217228.Google Scholar
Moore, T 2001. Genetic conflict, genomic imprinting and establishment of the epigenotype in relation to growth. Reproduction 122, 185193.CrossRefGoogle ScholarPubMed
Muller, M, Kersten, S 2003. Nutrigenomics: goals and strategies. Nature Reviews. Genetics 4, 315322.Google Scholar
Niewold, TA, Veldhuizen, EJA, van der Meulen, J, Haagsman, HP, de Wit, AAC, Smits, MA, Tersteeg, MHG, Hulst, MM 2007. The early transcriptional response of pig small intestinal mucosa to invasion by Salmonella enterica serovar typhimurium DT104. Molecular Immunology 44, 13161322.CrossRefGoogle ScholarPubMed
Niwa, H, Miyazaki, J, Smith, AG 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics 24, 372376.CrossRefGoogle ScholarPubMed
Opsomer G, Coryn M and De Kruif A 2002. Postpartum anoestrus in high yielding dairy cows. Proceedings of the Recent Developments and Perspectives in Bovine Medicine. Keynote Lectures of the XXII World Buiatrics Congress, August 18–23, 2002, Hannover, Germany, pp. 316–323.Google Scholar
Petralia, SM, Frye, CA 2005. In the ventral tegmental area picrotoxin blocks FGIN 1-27-induced increases in sexual behavior of rats and hamsters. Psychopharmacology 178, 174182.Google Scholar
Pfaff, D 2005. Hormone-driven mechanisms in the central nervous system facilitate the analysis of mammalian behaviours. Journal of Endocrinology 184, 447453.Google Scholar
Pfister-Genskow, M, Myers, C, Childs, LA, Lacson, JC, Patterson, T, Betthauser, JM, Goueleke, PJ, Koppang, RW, Lange, G, Fisher, P, Watt, SR, Forsberg, EJ, Zheng, Y, Leno, GH, Schultz, RM, Liu, B, Chetia, C, Yang, X, Hoeschele, I, Eilertsen, KJ 2005. Identification of differentially expressed genes in individual bovine preimplantation embryos produced by nuclear transfer: Improper reprogramming of genes required for development. Biology of Reproduction 72, 546555.CrossRefGoogle ScholarPubMed
Preuss, TM, Caceres, M, Oldham, MC, Geschwind, DH 2004. Human brain evolution: insights from microarrays. Nature Reviews. Genetics 5, 850860.Google Scholar
Pryce JE and Veerkamp RF 2001. The incorporation of fertility indices in genetic improvement programmes. Proceedings of the BSAS Occasional Meeting ‘Fertility in High Producing Dairy Cow’, September 20–22, 1999, Galway, Ireland, BSAS publication, no. 26, pp. 237–249.Google Scholar
Radich, JP, Mao, M, Stepaniants, B, Biery, M, Castle, J, Ward, T, Schimmack, G, Kobayashi, S, Carleton, M, Lampe, J, Linsley, PS 2004. Individual-specific variation of gene expression in peripheral blood leukocytes. Genomics 83, 980988.Google Scholar
Redon, R, Ishikawa, S, Fitch, KR, Feuk, L, Perry, GH, Andrews, TD, Fiegler, H, Shapero, MH, Carson, AR, Chen, WW, Cho, EK, Dallaire, S, Freeman, JL, Gonzalez, JR, Gratacos, M, Huang, J, Kalaitzopoulos, D, Komura, D, MacDonald, JR, Marshall, CR, Mei, R, Montgomery, L, Nishimura, K, Okamura, K, Shen, F, Somerville, MJ, Tchinda, J, Valsesia, A, Woodwark, C, Yang, FT, Zhang, JJ, Zerjal, T, Zhang, J, Armengol, L, Conrad, DF, Estivill, X, Tyler-Smith, C, Carter, NP, Aburatani, H, Lee, C, Jones, KW, Scherer, SW, Hurles, ME 2006. Global variation in copy number in the human genome. Nature 444, 444454.Google Scholar
Richter, HG, Tome, MM, Yulis, CR, Vio, KJ, Jimenez, AJ, Perez-Figares, JM, Rodriguez, EM 2004. Transcription of SCO-spondin in the subcommissural organ: evidence for down-regulation mediated by serotonin. Brain Research. Molecular Brain Research 129, 151162.Google Scholar
Roelofs, JB, van Eerdenburg, F, Soede, NM, Kemp, B 2005. Various behavioral signs of estrous and their relationship with time of ovulation in dairy cattle. Theriogenology 63, 13661377.Google Scholar
Rougon, G, Hobert, O 2003. New insights into the diversity and function of neuronal immunoglobulin superfamily molecules. Annual Review of Neuroscience 26, 207238.CrossRefGoogle ScholarPubMed
Roxstrom, A, Strandberg, E, Berglund, B, Emanuelson, U, Philipsson, J 2001. Genetic and environmental correlations among female fertility traits and milk production in different parities of Swedish red and white dairy cattle. Acta Agriculturae Scandinavica. Section A – Animal Science 51, 714.CrossRefGoogle Scholar
Royal, M, Mann, GE, Flint, APF 2000. Strategies for reversing the trend towards subfertility in dairy cattle. Veterinary Journal 160, 5360.Google Scholar
Rupprecht, R 2003. Neuroactive steroids: mechanisms of action and neuropharmacological properties. Psychoneuroendocrinology 28, 139168.Google Scholar
Schadt, EE, Monks, SA, Drake, TA, Lusis, AJ, Che, N, Colinayo, V, Ruff, TG, Milligan, SB, Lamb, JR, Cavet, G, Linsley, PS, Mao, M, Stoughton, RB, Friend, SH 2003. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297302.Google Scholar
Schena, M, Shalon, D, Davis, RW, Brown, PO 1995. Quantitative monitoring of gene-expression patterns with a complementary-DNA microarray. Science 270, 467470.Google Scholar
Schneider, F, Tomek, W, Grundker, C 2006. Gonadotropin-releasing hormone (GnRH) and its natural analogues: a review. Theriogenology 66, 691709.Google Scholar
Sharp, AJ, Cheng, Z, Eichler, EE 2006. Structural variation of the human genome. Annual Review of Genomics and Human Genetics 7, 407442.Google Scholar
Sheldon, IM, Wathes, DC, Dobson, H 2006. The management of bovine reproduction in elite herds. Veterinary Journal 171, 7078.Google Scholar
Sirard, MA, Dufort, I, Vallee, M, Massicotte, L, Gravel, C, Reghenas, H, Watson, AJ, King, WA, Robert, C 2005. Potential and limitations of bovine-specific arrays for the analysis of mRNA levels in early development: preliminary analysis using a bovine embryonic array. Reproduction, Fertility, and Development 17, 4757.Google Scholar
Southern, EM, Maskos, U, Elder, JK 1992. Analyzing and comparing nucleic-acid sequences by hybridization to arrays of oligonucleotides – evaluation using experimental-models. Genomics 13, 10081017.Google Scholar
Soutschek, J, Akinc, A, Bramlage, B, Charisse, K, Constien, R, Donoghue, M, Elbashir, S, Geick, A, Hadwiger, P, Harborth, J, John, M, Kesavan, V, Lavine, G, Pandey, RK, Racie, T, Rajeev, KG, Rohl, I, Toudjarska, I, Wang, G, Wuschko, S, Bumcrot, D, Koteliansky, V, Limmer, S, Manoharan, M, Vornlocher, HP 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173178.Google Scholar
Stanton, JA, Macgregor, AB, Green, DP 2003. Gene expression in the mouse preimplantation embryo. Reproduction 125, 457468.Google Scholar
Stranger, BE, Forrest, MS, Dunning, M, Ingle, CE, Beazley, C, Thorne, N, Redon, R, Bird, CP, de Grassi, A, Lee, C, Tyler-Smith, C, Carter, N, Scherer, SW, Tavare, S, Deloukas, P, Hurles, ME, Dermitzakis, ET 2007. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315, 848853.Google Scholar
Ushizawa, K, Herath, C, Kaneyama, K, Shiojima, S, Hirasawa, A, Takahashi, T, Imai, K, Ochiai, K, Tokunaga, T, Tsunoda, Y, Tsujimoto, G, Hashizume, K 2004. cDNA microarray analysis of bovine embryo gene expression profiles during the pre-implantation period. Reproductive Biology and Endocrinology 2, 77. Doi:10.1186/1477-7827-2-77.Google Scholar
Vallee, M, Gravel, C, Palin, MF, Reghenas, H, Stothard, P, Wishart, DS, Sirard, MA 2005. Identification of novel and known oocyte-specific genes using complementary DNA subtraction and microarray analysis in three different species. Biology of Reproduction 73, 6371.Google Scholar
Van Eerdenburg, FJCM 2006. Estrus detection in dairy cattle: How to beat the bull. Vlaams Diergeneeskundig Tijdschrift 75, 6169.CrossRefGoogle Scholar
Veerkamp, RF, Beerda, B 2007. Genetics and genomics to improve fertility in high producing dairy cows. Theriogenology 68S, S266S273.Google Scholar
Veerkamp, RF, Oldenbroek, JK, Van Der Gaast, HJ, Van Der Werf, JHJ 2000. Genetic correlation between days until start of luteal activity and milk yield, energy balance, and live weights. Journal of Dairy Science 83, 577583.CrossRefGoogle ScholarPubMed
Veerkamp, RF, Beerda, B, van der Lende, T 2003. Effects of genetic selection for milk yield on energy balance, levels of hormones, and metabolites in lactating cattle, and possible links to reduced fertility’s. Livestock Production Science 83, 257275.Google Scholar
Warzych, E, Wrenzycki, C, Peippo, J, Lechniak, D 2007. Maturation medium supplements affect transcript level of apoptosis and cell survival related genes in bovine blastocysts produced in vitro. Molecular Reproduction and Development 74, 280289.CrossRefGoogle ScholarPubMed
Weigel, KA 2006. Prospects for improving reproductive performance through genetic selection. Animal Reproduction Science 96, 323330.CrossRefGoogle ScholarPubMed
Weller, JI, Golik, M, Reikhav, S, Domochovsky, R, Seroussi, E, Ron, M 2008. Detection and analysis of quantitative trait loci affecting production and secondary traits on chromosome 7 in Israeli Holsteins. Journal of Dairy Science 91, 802813.Google Scholar
Wolf, E, Schernthaner, W, Zakhartchenko, V, Prelle, K, Stojkovic, M, Brem, G 2000. Transgenic technology in farm animals – progress and perspectives. Experimental Physiology 85, 615625.Google Scholar
Wolf, E, Arnold, GJ, Bauersachs, S, Blum, H, Frohlich, T, Hiendleder, S, Mitko, K, Reichenbach, HD 2006. Functional genome research – new strategies to improve fertility in cattle. Zuchtungskunde 78, 428439.Google Scholar
Wooding, FBP, Flint, APF 1994. Placentation. In Marshall’s physiology of reproduction (ed. GH Lamming), pp. 233460. Chapman and Hall, London, UK.Google Scholar
Wrenzycki, C, Herrmann, D, Lucas-Hahn, A, Lemme, E, Korsawe, K, Niemann, H 2004. Gene expression patterns in in vitro-produced and somatic nuclear transfer-derived preimplantation bovine embryos: relationship to the large offspring syndrome? Animal Reproduction Science 82-83, 593603.Google Scholar