Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T21:45:31.987Z Has data issue: false hasContentIssue false

Energy consumption in mixed crop-sheep farming systems: what factors of variation and how to decrease?

Published online by Cambridge University Press:  29 March 2010

M. Benoit*
Affiliation:
Institut National de la Recherche Agronomique, INRA, UR1213 Herbivores, Site de Theix, F-63122 Saint-Genès-Champanelle, France
G. Laignel
Affiliation:
Institut National de la Recherche Agronomique, INRA, UR1213 Herbivores, Site de Theix, F-63122 Saint-Genès-Champanelle, France
*
Get access

Abstract

Prompted by current concerns about energy resources and greenhouse gas emissions, we sought to assess the impact of certain key factors on energy efficiency in sheep-for-meat production and to evaluate the main directions for improvement. We used a modelling approach to simulate the functioning and performances of sheep-for-meat production systems integrating an energy balance calculation module. In the first step of this study, we reconstructed system functions and technical and economic results of four typological groups of farms in plainland areas. This served as a basis for calculating their energy efficiency in order to focus on the main factors of energy efficiency, such as high levels of fodder self-sufficiency (low concentrate consumption) and high ewe productivity. The Graze system presented the highest energy efficiency (EE) for sheep unit (EEs = 0.62) with the lowest consumption of equivalent fuel litres requirements (FuReq) per kilogram of lamb carcass produced (1.47), while the ‘sheep and cash crop’ system had the lowest EEs (0.36) and the highest FuReq per kg carcass (2.54). We then took the ‘mixed-farming system’ (a 130 ha farm, including 610 ewes and 40 ha of cropland) and studied three adaptations designed to increase the EEs: improvement of feed self-sufficiency (increased proportion of concentrate produced on-farm), introduction of legumes into the rotation (removal of bought-in nitrogen fertilisers), and production of fuel-oil (from rapeseed) with the flock using oil cakes. The most effective adaptation was the removal of the nitrogen fertilisers. The successive adaptations make it possible to cut energy consumption from 2.2 FuReq/kg carcass down to 0.98 after the optimisations, thereby increasing EEs from 0.42 to 0.93. Finally, we went on to study the energy impact of four factors influencing flock functioning and farm structure, i.e. ewe productivity, lamb weight, distances between plots, and flock size. Ewe productivity and lamb weight had a strong positive impact on EEs. When ewe productivity switched from 0.80 to 1.70, EEs increased from 0.29 to 0.48 while FuReq per kilogram carcass dropped from 3.39 to 1.88. When flock size was increased to over 1000 ewes, there were little or no energy-related economies of scale, as farm area also increased and most of the systems required more equipment.

Type
Full Paper
Copyright
Copyright © The Animal Consortium 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anil Kumar, GK, Panwar, VS, Yadav, KR, Sihag, S 2002. Mustard cake as a source of dietary protein for growing lambs. Small Ruminant Research 44, 4751.CrossRefGoogle Scholar
Bellet, V 2007. Des solutions pour réduire les charges alimentaires. Pâtre 542, 3033.Google Scholar
Bellet, V, Augas, N, Clenet, G, Fichet, L, Gouedard, A, Ingremeau, D, Migne, S, Pagnot, O, Bahier, G 2008. Consommations d’énergie des élevages ovins allaitants de l’ouest français. Rencontres autour des Recherches sur les Ruminants 15, 223.Google Scholar
Benoit, M 1998. Un outil de simulation du fonctionnement du troupeau ovin allaitant et de ses résultats économiques: une aide pour l’adaptation à des contextes nouveaux. INRA Productions Animales 11, 199209.CrossRefGoogle Scholar
Benoit, M, Laignel, G 2004. Exploitations ovins viande en zone de plaine: évolution sur 16 ans et analyse de la diversité. Colloque de la Société Française d’Économie Rurale (SFER): les systèmes de production agricole, performances, évolutions, perspectives, 18–19 Novembre 2004, Lille, France, pp. 112.Google Scholar
Benoit, M, Laignel, G 2006. Méthodologie d’élaboration de résultats technico-économiques en élevage ovin allaitant. Illustration en France, en zone de plaine et de montagne. Options Méditerranéennes, Série A Séminaires Méditerranéens 70, 5765.Google Scholar
Benoit, M, Laignel, G 2007. Sheep for meat farms in plain-based areas: diversity and trends over 16 years (France). Proceedings of the workshop: sheep production in Europe: state and perspectives, 7–8 September 2006, Pleven, Bulgaria, pp. 33–48.Google Scholar
Benoit, M, Tournadre, H, Dulphy, JP, Laignel, G, Prache, S, Cabaret, J 2009. Is intensification of reproduction rhythm sustainable in an organic sheep production system? A 4-year interdisciplinary study. Animal 3, 753763.CrossRefGoogle Scholar
Bochu, JL 2002. PLANETE: Méthode pour l’analyse énergétique de l’exploitation agricole et l’évaluation des émissions de gaz à effet de serre. Retrieved February 1, 2010, from http://www.solagro.org/site/im_user/014planeteooct02.pdf. SOLAGRO, Toulouse, France.Google Scholar
Bochu, JL 2007. Synthèse 2006 des bilans PLANETE. Rapport final. Etude réalisée pour le compte de l’ADEME par SOLAGRO. Contrat no. 0471C0009. Retrieved February 1, 2010, from www2.ademe.fr/servlet/getBin?name=25D7EDD9A20666448F606137658C8CD71188896554014.pdf. ADEME, Angers, France.Google Scholar
Bochu, JL, Couturier, C, Pointereau, P, Charru, M, Chantre, E 2005. Maîtrise de l’énergie et autonomie énergétique des exploitations agricoles françaises: état des lieux et perspectives d’actions pour les pouvoirs publics. Synthèse de l’étude – référence MPA 05.B1.05.01. SOLAGRO, Toulouse, France.Google Scholar
Boisdon, I, Benoit, M 2006. Compared energy efficiency of dairy cow and meat sheep farms in organic and in conventional farming. Proceedings of the Joint Organic Congress: Organic Farming and European Rural Development, 30–31 May 2006, Odense, Denmark, pp. 442–443.Google Scholar
Brandon, G, Pelletier, P, Cabon, G 2008. Utilisation de tourteaux de colza fermiers à deux niveaux de matière grasse pour l’engraissement de jeunes bovins charolais avec une ration sèche. Rencontres autour des Recherches sur les Ruminants 15, 310.Google Scholar
Brunschwig, P, Lamy, JM 2006. Production à la ferme d’huile végétale et de tourteaux: possibilités et conséquences. Fourrages 187, 329342.Google Scholar
Deike, S, Pallutt, B, Christen, O 2008. Investigations on the energy efficiency of organic and integrated farming with specific emphasis on pesticide use intensity. European Journal of Agronomy 28, 461470.CrossRefGoogle Scholar
Galan, G, Dolle, JB, Charroin, T, Ferrand, M, Hiet, C 2007. Consommation d’énergie en élevage bovin. Des repères pour se situer et progresser. Rencontres autour des Recherches sur les Ruminants 14, 2932.Google Scholar
Guinée, JB, Gorrée, M, Heijungs, R, Huppes, G, Kleijn, R, de Koning, A, van Oers, L, Wegener Sleeswijk, A, Suh, S, Udo de Haes, HA, de Bruijn, H, van Duin, R, Huijbregts, MAJ 2002. Handbook on life cycle assessment. Operational guide to the ISO standards. Kluwer Academic Publishers, Dordrecht, The Netherlands (ISBN:1-4020-0228-9).Google Scholar
Haas, G, Wetterich, F, Geier, U 2000. Life cycle assessment framework in agriculture on the farm level. The International Journal of Life Cycle Assessment 5, 345348.CrossRefGoogle Scholar
Halberg, N, Van der Werf, HMG, Basset-Mens, C, Dalgaard, R, de Boer, IJM 2005. Environmental assessment tools for the evaluation and improvement of European livestock production systems. Livestock Production Science 96, 3350.CrossRefGoogle Scholar
Institut de l’Elevage 2008. Chiffres clés 2008 – Productions ovines lait & viande. ISBN:978-2-84148-491-2, référence T1817-180860028 – PMB5151. Retrieved February 1, 2010, from http://www.inst-elevage.asso.fr/html1/IMG/pdf_CR_180860028.pdf. Institut de l’Elevage, Paris, France.Google Scholar
Institut National de la Recherche Agronomique (INRA) 1989. Ruminant nutrition. Recommended allowances and feed tables. INRA, Paris, France.Google Scholar
International Organization for Standardization (ISO) 1997. ISO 14040:1997 – environmental management – life cycle assessment – principles and framework. ISO, Geneva, Switzerland.Google Scholar
Matthews, KB, Wright, IA, Buchan, K, Davies, DA, Schwarz, G 2006. Assessing the options for upland livestock systems under CAP reform: developing and applying a livestock systems model within whole-farm systems analysis. Agricultural Systems 90, 3261.CrossRefGoogle Scholar
Olesen, JE, Eltun, R, Gooding, MJ, Jensen, ES, Köpke, U 1999. Designing and testing crop rotations for organic farming. Proceedings from an International Workshop. DARCOF Report no. 1. Electronic Copy from http://www.foejo.dk/publikation/rapport/dar_1.pdf. Danish Research Centre for Organic Farming, Tjele, Denmark.Google Scholar
Payraudeau, S, Van der Werf, HMG 2005. Environmental impact assessment for a farming region: a review of methods. Agriculture, Ecosystem and Environment 107, 119.CrossRefGoogle Scholar
Pervanchon, F, Bockstaller, C, Girardin, P 2002. Assessment of energy use in arable farming systems by means of an agro-ecological indicator: the energy indicator. Agricultural Systems 72, 149172.CrossRefGoogle Scholar
Schils, RLM, Verhagen, A, Aarts, HFM, Sebeket, LBJ 2005. A farm level approach to define successful mitigation strategies for GHG emissions from ruminant livestock systems. Nutrient Cycling in Agroecosystems 71, 163175.CrossRefGoogle Scholar
Society of Environmental Toxicology and Chemistry (SETAC) 1993. Guidelines for lifecycle assessment: a code of practice. SETAC, Brussels, Belgium.Google Scholar
Stout, BA 1990. Handbook of energy for world agriculture. Elsevier Science Publishers, London, UK.CrossRefGoogle Scholar
Triboï, E, Triboï-Blondel, AM 2004. Cropping system using lucerne as nitrogen source. Proceedings of the 8th congress of the European Society for Agronomy: European Agriculture in a Global Context, 11–15 July 2004, Copenhagen, Denmark, pp. 683–684.Google Scholar
Tzilivakis, J, Warner, DJ, May, M, Lewis, KA, Jaggard, K 2005. An assessment of the energy inputs and greenhouse gas emissions in sugar beet (beta vulgaris) production in the UK. Agricultural Systems 85, 101119.CrossRefGoogle Scholar
US Energy Information Administration 2009. Petroleum – Spot prices. Retrieved 01 February 2010 from http://tonto.eia.doe.gov/dnav/pet/pet_pri_spt_s1_d.htm.Google Scholar
Van der Werf, HMG, Petit, J 2002. Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agriculture, Ecosystems and Environment 93, 131145.CrossRefGoogle Scholar
Van der Werf, HMG, Tzilivakis, J, Lewis, K, Basset-Mens, C 2007. Environmental impacts of farms scenarios according to five assessment methods. Agriculture, Ecosystems and Environment 118, 327338.CrossRefGoogle Scholar
Veysset, P, Lherm, M, Bebin, D 2005. Evolutions, dispersions et déterminants du revenu en élevage bovin allaitant charolais etude sur 15 ans (1989–2003) à partir d’un échantillon constant de 69 exploitations. INRA Productions Animales 18 4, 265275.CrossRefGoogle Scholar