Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Martínez, M.E.
Ranilla, M.J.
Ramos, S.
Tejido, M.L.
and
Carro, M.D.
2009.
Effects of dilution rate and retention time of concentrate on efficiency of microbial growth, methane production, and ruminal fermentation in Rusitec fermenters.
Journal of Dairy Science,
Vol. 92,
Issue. 8,
p.
3930.
Martínez, M.E.
Ranilla, M.J.
Tejido, M.L.
Ramos, S.
and
Carro, M.D.
2010.
Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. I. Digestibility, fermentation parameters, and microbial growth.
Journal of Dairy Science,
Vol. 93,
Issue. 8,
p.
3684.
Cantalapiedra-Hijar, G.
Yáñez-Ruiz, D.R.
Newbold, C.J.
and
Molina-Alcaide, E.
2011.
The effect of the feed-to-buffer ratio on bacterial diversity and ruminal fermentation in single-flow continuous-culture fermenters.
Journal of Dairy Science,
Vol. 94,
Issue. 3,
p.
1374.
Hristov, A.N.
Lee, C.
Hristova, R.
Huhtanen, P.
and
Firkins, J.L.
2012.
A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data.
Journal of Dairy Science,
Vol. 95,
Issue. 9,
p.
5299.
Abecia, L.
Soto, E. C.
Ramos‐Morales, E.
and
Molina‐Alcaide, E.
2014.
Microbial and chemical composition of liquid‐associated bacteria in goats' rumen and fermenters.
Journal of Animal Physiology and Animal Nutrition,
Vol. 98,
Issue. 5,
p.
1001.
Tsuruoka, Katsuhiko
Kanamaru, Hidenobu
Takahashi, Hideyuki
and
Gotoh, Takafumi
2017.
Preliminary study of the effects of condensed barley distillers soluble on rumen fermentation and plasma metabolites in Japanese Black cows.
Animal Science Journal,
Vol. 88,
Issue. 4,
p.
610.
Cabeza-Luna, I.
Carro, M.D.
Fernández-Yepes, J.
and
Molina-Alcaide, E.
2018.
Effects of modifications to retain protozoa in continuous-culture fermenters on ruminal fermentation, microbial populations, and microbial biomass assessed by two different methods.
Animal Feed Science and Technology,
Vol. 240,
Issue. ,
p.
117.
Capelari, Matheus
Johnson, Kristen A
Latack, Brooke
Roth, Jolene
and
Powers, Wendy
2018.
The effect of encapsulated nitrate and monensin on ruminal fermentation using a semi-continuous culture system1.
Journal of Animal Science,
Vol. 96,
Issue. 8,
p.
3446.
Spanghero, Mauro
Chiaravalli, Maria
Colombini, Stefania
Fabro, Carla
Froldi, Federico
Mason, Federico
Moschini, Maurizio
Sarnataro, Chiara
Schiavon, Stefano
and
Tagliapietra, Franco
2019.
Rumen Inoculum Collected from Cows at Slaughter or from a Continuous Fermenter and Preserved in Warm, Refrigerated, Chilled or Freeze-Dried Environments for In Vitro Tests.
Animals,
Vol. 9,
Issue. 10,
p.
815.
Dillard, S. Leanne
Roca‐Fernández, Ana I.
Rubano, Melissa D.
and
Soder, Kathy J.
2019.
Evaluation of a single‐flow continuous culture fermenter system for determination of ruminal fermentation and enteric methane production.
Journal of Animal Physiology and Animal Nutrition,
Vol. 103,
Issue. 5,
p.
1313.
Lins, T.O.J.D’A.
Terry, S.A.
Silva, R.R.
Pereira, L.G.R.
Jancewicz, L.J.
He, M.L.
Wang, Y.
McAllister, T.A.
and
Chaves, A.V.
2019.
Effects of the inclusion of Moringa oleifera seed on rumen fermentation and methane production in a beef cattle diet using the rumen simulation technique (Rusitec).
animal,
Vol. 13,
Issue. 2,
p.
283.
Orton, Theresa
Rohn, Karl
Breves, Gerhard
and
Brede, Melanie
2020.
Alterations in fermentation parameters during and after induction of a subacute rumen acidosis in the rumen simulation technique.
Journal of Animal Physiology and Animal Nutrition,
Vol. 104,
Issue. 6,
p.
1678.
Tassone, Sonia
Fortina, Riccardo
and
Peiretti, Pier Giorgio
2020.
In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review.
Animals,
Vol. 10,
Issue. 5,
p.
775.
Ebeid, Hossam M.
Hassan, Faiz-ul
Li, Mengwei
Peng, Lijuan
Peng, Kaiping
Liang, Xin
and
Yang, Chengjian
2020.
Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes.
Frontiers in Veterinary Science,
Vol. 7,
Issue. ,
Brede, Johanna
Peukert, Manuela
Egert, Björn
Breves, Gerhard
and
Brede, Melanie
2021.
Long-Term Mootral Application Impacts Methane Production and the Microbial Community in the Rumen Simulation Technique System.
Frontiers in Microbiology,
Vol. 12,
Issue. ,
Deitmers, Jan-Helge
Gresner, Nina
and
Südekum, Karl-Heinz
2022.
Opportunities and limitations of a standardisation of the rumen simulation technique (RUSITEC) for analyses of ruminal nutrient degradation and fermentation and on microbial community characteristics.
Animal Feed Science and Technology,
Vol. 289,
Issue. ,
p.
115325.
Vinyard, James R
and
Faciola, Antonio P
2022.
Unraveling the pros and cons of various in vitro methodologies for ruminant nutrition: a review.
Translational Animal Science,
Vol. 6,
Issue. 4,
Kholif, Ahmed Eid
Gouda, Gouda Abdelhaleam
Morsy, Tarek Abdelfattah
Matloup, Osama Hefiny
Sallam, Sobhy Mohamed
and
Patra, Amlan Kumar
2023.
Associative effects between Chlorella vulgaris microalgae and Moringa oleifera leaf silage used at different levels decreased in vitro ruminal greenhouse gas production and altered ruminal fermentation.
Environmental Science and Pollution Research,
Vol. 30,
Issue. 3,
p.
6001.
Deitmers, J.-H.
Hartinger, T.
Gresner, N.
and
Südekum, K.-H.
2024.
Comparison of ruminal fermentation characteristics of two common forages using a coupled in vivo-in situ approach and the in vitro rumen simulation technique RUSITEC.
Animal Feed Science and Technology,
Vol. 309,
Issue. ,
p.
115900.