Published online by Cambridge University Press: 07 May 2014
A total of 862 lamb carcasses that were evaluated by both the VIAscan® and the current EUROP classification system were deboned and the actual yield was measured. Models were derived for predicting lean meat yield of the legs (Leg%), loin (Loin%) and shoulder (Shldr%) using the best VIAscan® variables selected by stepwise regression analysis of a calibration data set (n=603). The equations were tested on validation data set (n=259). The results showed that the VIAscan® predicted lean meat yield in the leg, loin and shoulder with an R2 of 0.60, 0.31 and 0.47, respectively, whereas the current EUROP system predicted lean yield with an R2 of 0.57, 0.32 and 0.37, respectively, for the three carcass parts. The VIAscan® also predicted the EUROP score of the trial carcasses, using a model derived from an earlier trial. The EUROP classification from VIAscan® and the current system were compared for their ability to explain the variation in lean yield of the whole carcass (LMY%) and trimmed fat (FAT%). The predicted EUROP scores from the VIAscan® explained 36% of the variation in LMY% and 60% of the variation in FAT%, compared with the current EUROP system that explained 49% and 72%, respectively. The EUROP classification obtained by the VIAscan® was tested against a panel of three expert classifiers (n=696). The VIAscan® classification agreed with 82% of conformation and 73% of the fat classes assigned by a panel of expert classifiers. It was concluded that VIAscan® provides a technology that can directly predict LMY% of lamb carcasses with more accuracy than the current EUROP classification system. The VIAscan® is also capable of classifying lamb carcasses into EUROP classes with an accuracy that fulfils minimum demands for the Icelandic sheep industry. Although the VIAscan® prediction of the Loin% is low, it is comparable to the current EUROP system, and should not hinder the adoption of the technology to estimate the yield of Icelandic lambs as it delivered a more accurate prediction for the Leg%, Shldr% and overall LMY% with negligible prediction bias.