Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T04:57:30.975Z Has data issue: false hasContentIssue false

Utilization of dietary carbohydrates by fish: a comparative study in eel and trout

Published online by Cambridge University Press:  02 September 2010

M. García-Gallego
Affiliation:
Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
J. Bazoco
Affiliation:
Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
M. D. Suàrez
Affiliation:
Departamento de Biología Aplicada, EPS, Universidad de Almeria, Almenía, Spain
A. Sanz
Affiliation:
Departamento de Biología Animal y Ecología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
Get access

Abstract

To evaluate the ability of the eel to use diets with high carbohydrate content, a comparative study was made by using the rainbow trout, a carnivorous fish, as a reference species. Four isoenergenetic diets (in terms of gross energy) were formulated incorporating different protein/carbohydrate ratios (450/200, 370/300, 290/400 and 210/500 as g/kg dry matter, respectively) and each one was tested in three replicates groups of eels and trout. The data on growth, food conversion and utilization of dietary protein and energy show that the eel has a comparatively greater ability than the rainbow trout for using diets with a high carbohydrate level. Thus it is postulated that higher carbohydrate levels could be used for formulating cheaper diets.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adron, J. W., Blair, A., Cowey, C. B. and Shanks, A. M. 1976. Effects of dietary energy level and dietary energy source on growth, feed conversion and body composition of turbot (Scophthalmus maximus L.) Aquaculture 7: 125132.CrossRefGoogle Scholar
Alliot, E., Pastoreaud, A. and Nedelec, J. 1978. Etude de l'aport calorique et du rapport calorico-azote dans l'alimentation du bar, Dicentrarchus labrax. Influence sur la croissance et la composition corporelle. Symposium of European Island Fisheries Advisory Commission: E/49.Google Scholar
Anderson, J., Jackson, J. A., Matty, A. J. and Capper, B. S. 1984. Effects of dietary carbohydrate and fiber on the tilapia (Oreochromis niloticus). Aquaculture 37: 303314.CrossRefGoogle Scholar
Bergot, F. 1979a. Effects of dietary carbohydrates and of their mode of distribution in glycaemia in rainbow trout. Comparative Biochemistry and Physiology 64: 543547.CrossRefGoogle Scholar
Bergot, F. 1979b. Problemes particuliers poses per l'utilisation des glucides chez la truite arc-in-ciel. Annales de Nutrition et de VAlimentaion 33: 247257.Google Scholar
Brett, J. R. and Groves, T. D. D. 1979. Physiological energetics. In Fish Physiology, vol. VII. pp. 279352. Academic Press, New York.Google Scholar
Bulheim, U. 1974. Untersuchungen zur amylase and proteaseaktivitat im darminhalt sowie des blutzukker and leberglykogengehaltes geim aal (Anguilla anguilla L.) in abhangigkeit von der futterqualitat. Dissertation, University of Rostock.Google Scholar
Cho, C. Y., Slinger, S. J. and Bayley, H. S. 1982. Bioenergetics of salmonid fishes energy intake, expenditure and productivity. Comparative Biochemistry and Physiology 73: 25–41.Google Scholar
Cowey, C. B., Adron, J. W., Brown, D. A. and Shanks, A. M. 1975. Studies on the nutrition of marine flatfish. The metabolism of glucose by plaice (Pleuronectes planesa) and the effect of dietary energy source on protein utilization in plaice. British Journal of Nutrition 33: 219231.CrossRefGoogle Scholar
Degani, G. 1987. The influence of the relative proportions of dietary protein and carbohydrate on body weight gain, nitrogen retention and feed conversion of European eels, (Anguilla anguilla L.) Aquaculture and Fisheries Management 18: 151158.Google Scholar
Degani, G., Gallagher, M. L. and Levanon, D. 1987. Effect of dietary protein and energy levels of growth of European eels (Anguilla anguilla). Boletin Fisiologia Animal de Sao Paulo 11: 95100.Google Scholar
Degani, G. and Viola, S. 1987. The protein sparing effect of carbohydrates in the diet of eels (Anguilla anguilla). Aquaculture 64: 283291.CrossRefGoogle Scholar
Falgo, R. 1973. Untersuchungen von enzymakyivitaten im darminhalt der regenbogenforelle (Salmo gairdneri) nach futterung mit naturlicher und halbsynthetischer nahrung. Dissertation, University of Rostock.Google Scholar
Furuichi, M., Ito, M. and Yone, Y. 1987. Effect of G-starch on growth, feed efficiency and chemical components of liver, muscle, and blood of carp and red sea bream. Nippon Suisan Gakkaishi 53: 14371442.CrossRefGoogle Scholar
Furuichi, M. and Yone, Y. 1980. Effect of dietary dextrin levels on the growth and feed efficiency, the chemical composition of liver and dorsal muscle, and the absorption of dietary protein and dextrin in fishes. Bulletin of the Japanese Society of Scientific Fisheries 46: 225229.CrossRefGoogle Scholar
Garcia-Gallego, M. G., Hidalgo, C., Suarez, M. D., Sanz, A. and Higuera, M. de la. 1993. Feeding of the European eel nguilla, anguilla). II. Influence of dietary lipid level. Comparative Biochemistry and Physiology 105A: 171175.CrossRefGoogle Scholar
Hagihara, S., Ishikawa, T. and Shoji, Y. 1967. Potato-starch in commercial eel feed. Annual Meeting of Japanese Society of Fishes, pp. 813.Google Scholar
Hemre, G. I., Lie, O., Lied, E. and Lambertsen, G. 1989. Starch as an energy source in feed for cod (Gadus morhua): digestibility and retention. Aquaculture 80: 261270.Google Scholar
Hidalgo, M. C. 1988. Influencia de la cantidad y calidad de la proteina dietaria sobre el crecimiento y utilizacion nutritiva de la dieta en la anguila. Doctoral thesis, University of Granada.Google Scholar
Hidalgo, M. C., Sanz, A., Garcia-Gallego, M. G., Suarez, M. D. and de la Higuera, M. 1993. Feeding of the European eel (Anguilla anguilla). I. Influence of dietary carbohydrate level. Comparative Biochemistry and Physiology 105A: 165169.CrossRefGoogle Scholar
Higuera, M. de la, Garcia-Gallego, M. G., Sanz, A., Hidalgo, M. C. and Suarez, M. D. 1989. Utilization of dietary protein by the eel (Anguilla anguilla): optimum dietary protein levels. Aquaculture 79: 5361.CrossRefGoogle Scholar
Hilton, J. W. and Atkinson, J. L. 1982. Responses of rainbow trout (Salmo gairdneri) to increased levels of available carbohydrate in practical trout diets. British Journal of Nutrition 47: 597607.Google Scholar
Jauncey, K. 1982. The effects of varying dietary protein level on the growth food conversion, protein utilization and body composition of juvenile tilapias (Sarotherodon mossambicus). Aquaculture 27: 4354.CrossRefGoogle Scholar
Kaushik, S. J., Medale, F., Fauconneau, B. and Blanc, D. 1989. Effect of digestible carbohydrates on protein/energy utilization and on glucose metabolism in rainbow trout (Salmo gairdneri R.). Aquaculture 79: 6374.Google Scholar
Kaushik, S. J. and Oliva-Teles, A. 1985. Effects of digestible energy on nitrogen and energy balance in rainbow trout. Aquaculture 50: 89111.CrossRefGoogle Scholar
Kitamikado, M., Morishita, T. and Tachino, S. 1964. Digestibility of dietary protein in rainbow trout-II. Effect of starch and oil contents in diets, and size of fish. Bulletin of the Japanese Society of Scientific Fisheries 30: 5054.Google Scholar
Kitamikado, M. and Tachino, S. 1960a. Studies on the digestive enzymes of rainbow trout. I. Carbohydrases. Bulletin of the Japanese Society of Scientific Fisheries 26:679684.CrossRefGoogle Scholar
Kitamikado, M. and Tachino, S. 1960b. Studies on the digestive enzymes of rainbow trout. II. Proteases. Bulletin of the Japanese Society of Scientific Fisheries 26: 685690.Google Scholar
Kiihne, H. 1973. Unthersuchungen zur verdaulichkeit un verwertung veschiedener futtermischungen beim Aal (Anguilla anguilla). Dissertation, University of Rostock.Google Scholar
Lee, D. J. and Putnam, G. B. 1973. The response of rainbow trout to varying protein]energy ratios in a test diet. Journal of Nutrition 103: 916922.Google Scholar
Lovell, T. 1989. Revaluation of carbohydrates in fish feeds. Aquaculture Management May/June: 6264.Google Scholar
Luquet, P., Leger, C. and Bergot, F. 1975. Effet de la suppression des glucides dans l'alimentation de la truite arc-en-ciel a la température de 10°C. I. Croissance en fonction du niveau d'ingestion protéique. Annales de Hydrobiologie 6: 6170.Google Scholar
Martinez Millán, L., Cañas, I. and Fernández, P. 1987. Selectión y valoracion de materias primas. Cntrol de calidad de los alimentos. In Alimentacion en Acuicultura, pp. 122. CAICYT, Madrid, Spain.Google Scholar
Nose, T. and Arai, S. 1972. Optimum level of protein in purified diet of eel (Anguilla japonica). Bulletin of Freshwater Fisheries Research Laboratory 22:145155.Google Scholar
Page, J. W. and Andrews, J. W. 1973. Interactions of dietary protein and energy on channel catfish (Ictalurus punctatus). Journal of Nutrition 103:13391346.CrossRefGoogle ScholarPubMed
Phillips, A. M., Tunison, A. V. and Brockway, D. R. 1948. The utilization of carbohydrates by trout. Fisheries Research Bulleton, NY 11: 44.Google Scholar
Pieper, A. 1977. Untersuchungen über die verwertung einiger kohlehydrate durch regenbogenforellen (Salmo gairdneri Richardson). Dissertation, University of Göttingen.Google Scholar
Pieper, A. and Pfeffer, E. 1978. Carbohydrates as possible sources of dietary energy for rainbow trout (Salmo gairdneri Richardson). Symposium of European Island Fisheries Advisory Commission: E/21.Google Scholar
Pieper, A. and Pfeffer, E. 1980. Studies on the effect of increasing proportions of sucrose or gelatinized maize starch in diets for rainbow trout (Salmo gairdneri, R) on the utilization of dietary energy and protein. Aquaculture 20: 333342.CrossRefGoogle Scholar
Ringrose, R. C. 1971. Calorie to protein ratio for brook trout (Salvelinus fontinalis). Journal Fisheries Research Board of Canada 28:11131117.Google Scholar
Rychly, J. and Spannhof, L. 1979. Nitrogen balance in trout. I. Digestibility of diets containing varying levels of protein and carbohydrate. Aquaculture 16: 3946.CrossRefGoogle Scholar
Sánchez-Muros, M. J. 1990. Capacidad de adaptatión del metabolismo intermediario de la trucha a variaciones en la compositión de la dieta. Doctoral thesis, University of Granada.Google Scholar
Sanz, A., Suárez, M. D., Hidalgo, M. C., Garcia-Gallego, M. G. and de la Higuera, M. 1993. Feeding of the European eel (Anguilla anguilla). III. Influence of the relative proportions of the energy yielding nutrients. Comparative Physiology and Biochemistry 105A: 177182.Google Scholar
Schmitz, O., Greuel, E. and Pfeffer, E. 1982. Studies of digestion and utilization of organic nutrients by growing eels. Zeitschrift fur Tierphysiolgie, Tierernahrung und Futtermittelkunde 48:138143.Google Scholar
Smith, R. R. 1971. A method for measuring digestibility and metabolizable energy of fish feeds. Progressive Fish-Culturist 33:132134.CrossRefGoogle Scholar
Spannhof, L. and Kuhne, H. 1977. Untersuchungen sur Verwertung verschiedener Futtermischungen durch europaische ale (Anguilla anguilla L.). Archiv fiir Tierernahrung 27: 517531.Google Scholar
Steffens, W. 1987. Principios fundamentales de la alimentacion de los peces. Ed. Acribia, Zaragoza.Google Scholar
Takeuchi, T., Watanabe, T. and Ogino, C. 1978. Optimum ratio of protein to lipid in diets of rainbow trout. Bulletin of the Japanese Society of Scientific Fisheries 44: 683688.CrossRefGoogle Scholar
Watanabe, T., Takeuchi, T., Satoh, S., Ida, T. and Yaguchi, M. 1987. Development of low protein high energy diets for practical carp culture with special reference to reduction of total nitrogen excretion. Nippon Suisan Gakkaishi 53: 14131423.Google Scholar