Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T11:59:14.747Z Has data issue: false hasContentIssue false

Use of a partial least-squares regression model to predict test day of milk, fat and protein yields in dairy goats

Published online by Cambridge University Press:  09 March 2007

N.P.P. Macciotta*
Affiliation:
Dipartimento di Scienze Zootecniche, Universita di Sassari, Via De Nicola 9, 07100 Sassaru, Italy
C. Dimauro
Affiliation:
Dipartimento di Scienze Zootecniche, Universita di Sassari, Via De Nicola 9, 07100 Sassaru, Italy
N. Bacciu
Affiliation:
Dipartimento di Scienze Zootecniche, Universita di Sassari, Via De Nicola 9, 07100 Sassaru, Italy
P. Fresi
Affiliation:
Associazione Nazionale della Pastorizia, Via Togliatti 1587, 00155, Rome, Italy
A. Cappio-Borlino
Affiliation:
Dipartimento di Scienze Zootecniche, Universita di Sassari, Via De Nicola 9, 07100 Sassaru, Italy
*
E-mail: [email protected]
Get access

Abstract

A model able to predict missing test day data for milk, fat and protein yields on the basis of few recorded tests was proposed, based on the partial least squares (PLS) regression technique, a multivariate method that is able to solve problems related to high collinearity among predictors. A data set of 1731 lactations of Sarda breed dairy Goats was split into two data sets, one for model estimation and the other for the evaluation of PLS prediction capability. Eight scenarios of simplified recording schemes for fat and protein yields were simulated. Correlations among predicted and observed test day yields were quite high (from 0·50 to 0·88 and from 0·53 to 0·96 for fat and protein yields, respectively, in the different scenarios). Results highlight great flexibility and accuracy of this multivariate technique.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdi, H. 2003. Partial least squares (PLS) regression. In Encyclopedia of social sciences research methods Lewis–Beck, M.Bryman, A. and Futing, T.), pp.17. Sage Publication, Thousand Oaks, CA.Google Scholar
Bouloc, N., Barillet, F., Boichard, D., Sigwald, J. P. and Bridoux, J. 1991. Etudes des possibilities d'allegement des controle laitier official chez les caprins. Annales de Zootechnie 40: 125139.CrossRefGoogle Scholar
De Jong, S. 1993. SIMPLS: an alternative approach to Partial Least Squares regression. Chemometrics and Intelligent Laboratory Systems 18: 251263.CrossRefGoogle Scholar
Draper, N. R. and Smith, H. 1981. Applied regression analysis. John Wiley and Sons, New York.Google Scholar
Geladi, P. and Kowlaski, B. 1986. Partial least squares regression: a tutorial. Analytica Chimica Acta 35: 117.CrossRefGoogle Scholar
Giaccone, P., Portolano, B., Todaro, M. and Leto, G. 1996. Semplificazione dei metodi di controllo della produzione del latte nella specie caprina. Zootecnica e Nutrizione Animale 22: 139148.Google Scholar
Gonzalo, C., Othmane, M. H., Angel Fuertes, J., De La Fuente, L. F. and San Primitivo, F. 2003. Losses of precision associated with simplified designs of milk recording in dairy ewes. Journal of Dairy Research 70: 441444.CrossRefGoogle ScholarPubMed
Hoeskuldsson, A. 1988. Partial least squares PLS methods. Journal of Chemometrics 88: 211228.Google Scholar
Kominakis, A. P., Abas, Z., Maltaris, I. and Rogdakis, E. 2002. A preliminary study of the application of artificial neural networks to prediction of milk yield in dairy sheep. Computers and Eletronics in Agriculture 35: 3548.CrossRefGoogle Scholar
Macciotta, N. P. P., Vicario, D., Pulina, G. and Cappio–Borlino, A. 2002. Test day and lactation yield predictions in Italian Simmental cows by ARMA methods. Journal of Dairy Science 85: 31073114.CrossRefGoogle ScholarPubMed
Mayeres, P., Stoll, J., Bormann, J., Reents, R. and Gengler, N. 2004. Prediction of daily milk, fat and protein production by a random regression test day model. Journal of Dairy Science 87: 19251933.CrossRefGoogle ScholarPubMed
Naes, T. and Martens, H. 1985. Comparison of prediction methods for multicollinear data. Communications in Statistics, Simulation and Computation 14: 545576.CrossRefGoogle Scholar
Pool, M. H. and Meuwissen, T. H. E. 1999. Prediction of daily milk yields from a limited number of test days using test day model. Journal of Dairy Science 82: 15551564.CrossRefGoogle Scholar
Schaeffer, L. R. and Jamrozik, J. 1996. Multiple–trait prediction of lactation yields for dairy cows. Journal of Dairy Science 79: 20442055.CrossRefGoogle ScholarPubMed
Tedeschi, L. O. 2006. Assessment of adequacy of mathematical models. Agricultural Systems 89: 225247.CrossRefGoogle Scholar
Theil, H. 1961. Economic forecasts and policy. In Contribution of economic analysis (ed. Strotz, R., Timbergen, J., Verdoorn, P. J. and Witteveen, H. J.), pp. 648. North–Holland Publishing Company, Amsterdam.Google Scholar
Vasconcelos, J., Martins, A., Petim–Batista, M. F., Colaco, J., Blake, R. W. and Carvalheira, J. 2004. Prediction of daily and lactation yields of milk, fat, and protein using an autoregressive repeatability test day model. Journal of Dairy Science 87: 25912598.CrossRefGoogle ScholarPubMed