Published online by Cambridge University Press: 02 September 2010
An intensive sheep production system using flocks of 100 Scottish Halfbred (SHB), 100 Welsh Speckleface (WSF) and 100 Finn Blackface (FBF) ewes maintained by 8, 4 and 6 ha grassland respectively for a 5-year period, was investigated to establish the consequences of high flock prolificacy and the measures taken to achieve it, including PMS administration. Mating occurred in late October/November at ewe: ram ratios of 25 or 33: 1. Ewes were housed in winter and fed silage, with supplementary cereals in late pregnancy. Lambs in excess of 2 (SHB) and 1 (WSF and FBF) per ewe were artificially reared and fattened indoors; ewes and lambs at grass were rotationally grazed (with forward creep grazing by the lambs). Prolificacy in the SHB breed was 225 lambs born per 100 ewes mated for untreated ewes and 237 for hormone-treated ewes; 119 and 155 respectively for WSF ewes; and 255 for FBF ewes (all untreated). Lambs sold per 100 ewes mated were: for SHB, 200 and 177; WSF, 102 and 107; FBF, 201.
Good ewe condition and heavy live weights at mating were associated with appetite problems on silage in late pregnancy; PMS injection with a failure to secure conception rates above 80% at the critical oestrus and a markedly lower prolificacy for ewes conceiving at later oestruses; mating in the middle of the breeding season and March/April lambing with slow lamb growth rates on grass in July and August. Hormone-induced high prolificacy was associated with a greater proportion of large multiple litters than natural high prolificacy, and consequent smaller lamb birth weights and more perinatal mortality. There was a significant negative regression relating fleece weight with litter size. The results suggest the existence of an optimal level of prolificacy for the system employed.