Published online by Cambridge University Press: 09 March 2007
Two factorial experiments were designed to determine the effects of stage of lactation, and season of the year, on cow responses to supplementary feeding. These experiments were conducted over consecutive years with 128 high genetic merit multiparous Holstein-Friesian cows in early, mid and late lactation in spring, summer, autumn and winter. At each stage of lactation, and in each season of the year, cows were offered a restricted pasture allowance (25 to 35 kg dry matter (DM) per cow per day), either unsupplemented (control) or with supplement at 50 MJ metabolizable energy (ME) per cow per day in experiment 1 and 80 MJ ME per cow per day in experiment 2. The two supplements given in both years were rolled maize grain (MG) and a mixture of foods formulated to nutritionally balance the diet (BR). In experiment 2, another treatment, of a generous pasture allowance (60 to 75 kg DM per cow per day) (AP), was imposed on an additional group of early lactation cows during each season. Direct milk solids (MS) (milk fat plus milk protein) responses in experiment 1 to MG were 169, 279, 195 and 251 g MS per cow per day in spring, summer, autumn and winter, respectively, while those to BR were 107, 250, 192, 289 g MS per cow per day. In experiment 2, however, milk solids responses to both supplements during spring were slightly below the control treatment, with values similar to those in experiment 1 in summer and autumn for cows on the BR but not the MG supplement. Milk solids responses to supplementary foods were largest during seasons of the year when the quantity and quality of pasture on offer resulted in the lowest milk solids yield from unsupplemented cows. When carry-over effects of feeding MG and BR on milk solids production were detected, they were only about half the magnitude of the direct effects. Serum urea concentrations were higher in control cows than those offered MG with a similar effect for BR in all but summer in experiment 1, while serum glucose concentrations were highest in winter and lowest in summer. The most important factor influencing milk solids responses was the relative food deficit (RFD) represented by the decline in milk solids yield of the respective control groups after changing from a generous pasture allowance to restricted allowance when the feeding treatments were imposed. Total milk solids responses (direct and carry-over) to supplements were greatest when severe food restrictions, relative to the cows' current food demand, resulted in large reductions in milk solids yield of the control groups. The RFD was the best predictor of milk solids response to supplementary foods. Therefore, it is likely that cows are most responsive to supplementary foods during or immediately after the imposition of a severe food restriction.