Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T07:26:36.372Z Has data issue: false hasContentIssue false

A partial genome scan to map quantitative trait loci for carcass composition, as assessed by X-ray computer tomography, and meat quality traits in Scottish Blackface Sheep

Published online by Cambridge University Press:  09 March 2007

E. Karamichou*
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
R.I. Richardson
Affiliation:
Department of Clinical Veterinary Science, Division of Farm Animal Science, University of Bristol, Langford, Bristol, BS40 5DU, UK
G.R. Nute
Affiliation:
Department of Clinical Veterinary Science, Division of Farm Animal Science, University of Bristol, Langford, Bristol, BS40 5DU, UK
K.A. McLean
Affiliation:
Animal Biology Division, SAC, Kings Buildings, Edinburgh, EH9 3JG, UK
S.C. Bishop
Affiliation:
Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, UK
*
Get access

Abstract

Quantitative trait loci (QTL) were identified for traits related to carcass and meat quality in Scottish Blackface sheep. The population studied was a double backcross between lines of sheep divergently selected for carcass lean content (LEAN and FAT lines), comprising nine half-sib families. Carcass composition (600 lambs) was assessed non-destructively using computerized tomography (CT) scanning and meat quality measurements (initial and final pH of m. semimembranosus, colour, shear force value, carcass weight, lamb flavour, juiciness, tenderness and overall liking) were taken on 300 male lambs. Lambs and their sires were genotyped across candidate regions on chromosomes 1, 2, 3, 5, 14, 18, 20 and 21. QTL analyses were performed using regression interval mapping techniques. In total, nine genome-wise significant and 11 chromosome-wise and suggestive QTL were detected in seven out of eight chromosomes. Genome-wise significant QTL were mapped for lamb flavour (OAR 1); for muscle densities (OAR 2 and OAR 3); for colour a* (redness) (OAR 3); for bone density (OAR 1); for slaughter live weight (OAR 1 and OAR 2) and for the weights of cold and hot carcass (OAR 5). The QTL with the strongest statistical evidence affected the lamb flavour of meat and was on OAR 1, in a region homologous with a porcine SSC 13 QTL identified for pork flavour. This QTL segregated in four of the nine families. This study provides new information on QTL affecting meat quality and carcass composition traits in sheep, which may lead to novel opportunities for genetically improving these traits.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bishop, S. C. 1993. Selection for predicted carcass lean content in Scottish Blackface sheep. Animal Production 56: 379386.Google Scholar
Broad, T. E., Glass, B. C., Greer, G. J., Robertson, T. M., Bain, W. E., Lord, E. A. and McEwan, J. C. 2000. Search for a locus near to myostatin that increases muscling in Texel sheep in New Zealand. Proceedings of New Zealand Society of Animal Production 60: 110112.Google Scholar
Campbell, A. W., Bain, W. E., McRae, A. F., Broad, T. E., Johnstone, P. D., Dodds, K. G., Veenvliet, B. A., Greer, G. J., Glass, B. C. and Beattie, A. E. 2003. Bone density in sheep: genetic variation and quantitative trait loci localisation. Bone 33: 540548.Google Scholar
Casas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M. and Koohmaraie, M. 2000. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science 78: 560569.CrossRefGoogle ScholarPubMed
Casas-Carillo, E., Kirkpatrick, B. W., Prill-Adams, A., Price, S. G. and Clutter, A. C. 1997. Relationship of growth hormone and insulin-like growth factor-1 genotypes with growth and carcass traits in swine. Animal Genetics 28: 8893.Google Scholar
Churchill, G. A. and Doerge, R. W. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963971.Google Scholar
Claus, R., Weiler, U. and Herzog, A. 1994. Physiological aspects of androstenone and skatole formation in the boar-A review with experimental data. Meat Science 38: 289305.CrossRefGoogle ScholarPubMed
Cockett, N. E., Jackson, S. P., Shay, T. L., Nielsen, D., Moore, S. S., Steele, M. R., Barendse, W., Green, R. D. and Georges, M. 1994. Chromosomal localization of the callipyge gene in sheep using bovine DNA markers. Proceedings of the National Academy of Sciences, USA 91: 30193023.Google Scholar
Collins, A. C., Martin, I. C. A. and Kirkpatrick, B. W. 1993. Growth quantitative trait loci (Qtl) on mouse chromosome-10 in a Quackenbush-Swiss X C57Bl/6J backcross. Mammalian Genome 4: 454458.Google Scholar
Cummings, S. R., Black, D. M., Nevitt, M. C., Browner, W. S., Cauley, J. A., Genant, H. K., Mascioli, S. R., Scott, J. C., Seeley, D. G., Steiger, P. and Vogt, T. M. 1990. Appendicular bone-density and age predict hip fracture in women. Journal of the American Medical Association 263: 665668.CrossRefGoogle ScholarPubMed
Davis, G. P., Hetzel, D. J. S., Corbet, N. J., Scacheri, S., Lowden, S., Renaud, J., Mayne, C., Stevenson, R., Moore, S. S. and Byrne, K. 1998. The mapping of quantitative trait loci for birth weight in a tropical beef herd. Proceedings of the sixth world congress on genetics applied to livestock production, Armidale, Australia. vol. 26, pp. 441444.Google Scholar
De Koning, D. J., Schulmant, N. F., Elo, K., Moisio, S., Kinos, R., Vilkki, J. and Maki-Tanila, A. 2001. Mapping of multiple quantitative trait loci by simple regression in half-sib designs. Journal of Animal Science 79: 616622.Google Scholar
Elo, K. T., Vilkki, H. J., De Koning, D. J., Velmala, R. J. and Maki-Tanila, A. V. 1999. A quantitative trait locus for live weight maps to bovine chromosome 23. Mammalian Genome 10: 831835.CrossRefGoogle ScholarPubMed
Freking, B. A., Keele, J. W., Shackelford, S. D., Wheeler, T. L., Koohmaraie, M., Nielsen, M. K. and Leymaster, K. A. 1999. Evaluation of the ovine callipyge locus. III. Genotypic effects on meat quality traits. Journal of Animal Science 77: 23362344.Google Scholar
Freking, B. A., Murphy, S. K., Wylie, A. A., Rhodes, S. J., Keele, J. W., Leymaster, K. A., Jirtle, R. L. and Smith, T. P. L. 2002. Identification of the single base change causing the callipyge muscle hypertrophy phenotype, the only known example of polar overdominance in mammals. Genome Research 12: 14961506.Google Scholar
Green, P., Falls, K. and Crooks, S. 1990. Cri-map version 2.4. Washington University School of Medicine.Google Scholar
Hammond, A. C., Carlson, J. R. and Willet, J. R. 1979. The metabolism and disposition of 3-methylindole in goats. Life Sciences 25: 13011306.Google Scholar
Jansen, R. C. 1993. Interval mapping of multiple quantitative trait loci. Genetics 135: 205211.Google Scholar
Jopson, N. B., McEwan, J. C., Dodds, K. G. and Young, M. J. 1995. Economic benefits of including computer tomography measurements in sheep breeding programmes. Proceedings of Australian Association for Animal Breeding and Genetics 12: 7276.Google Scholar
Karamichou, E., Richardson, R. I., Nute, G. R., McLean, K. A. and Bishop, S. C. 2006. Genetic analyses of carcass composition, as assessed by X-ray computer tomography, and meat quality traits in Scottish Blackface sheep. Animal Science 82: 151162.CrossRefGoogle Scholar
Kmiec, M. 1999. Transferrin polymorphism versus growth rate in lambs, polish long-wool sheep. I. Frequency of genes and genotypes of transferrin in flock of Polish Long-wool sheep. Archiv für Tierzucht-Archives of Animal Breeding 42: 393402.CrossRefGoogle Scholar
Knott, S. A., Elsen, J. M. and Haley, C. S. 1996. Methods for multiple-marker mapping of quantitative trait loci in half-sib populations. Theoretical and Applied Genetics 93: 7180.CrossRefGoogle ScholarPubMed
Knott, S. A., Marklund, L., Haley, C. S., Andersson, K., Davies, W., Ellegren, H., Fredholm, M., Hansson, I., Hoyheim, B., Lundstrom, K., Moller, M. and Andersson, L. 1998. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genetics 149: 10691080.Google Scholar
Lander, E. S. and Botstein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185199.Google Scholar
Lee, G. J., Archibald, A. L., Law, A. S., Lloyd, S., Wood, J. D. and Haley, C. S. 2004. Detection of quantitative trait loci for androstenone, skatole and boar taint in a cross between Large White and Meishan pigs. Animal Genetics 36: 1422.Google Scholar
Maddox, J. F., Davies, K. P., Crawford, A. M., Hulme, D. J., Vaiman, D., Cribiu, E. P., Freking, B. A., Beh, K. J., Cockett, N. E., Kang, N., Riffkin, C. D., Drinkwater, R., Moore, S. S., Dodds, K. G., Lumsden, J. M., van Stijn, T. C., Phua, S. H., Adelson, D. L., Burkin, H. R., Broom, J. E., Buitkamp, J., Cambridge, L., Cushwa, W. T., Gerard, E., Galloway, S. M., Harrison, B., Hawken, R. J., Hiendleder, S., Henry, H. M., Medrano, J. F., Paterson, K. A., Schibler, L., Stone, R. T. and van Hest, B. 2001. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Research 11: 12751289.Google Scholar
McRae, A. F., Bishop, S. C., Walling, G. A., Wilson, A. D. and Visscher, P. M. 2005. Mapping of multiple quantitative trait loci for growth and carcass traits in complex commercial sheep pedigree. Animal Science 80: 135141.CrossRefGoogle Scholar
Mehrabian, M., Allayee, H., Stockton, J., Lum, P. Y., Drake, T. A., Castellani, L. W., Suh, M., Armour, C., Edwards, S., Lamb, J., Lusis, A. J. and Schadt, E. E. 2005. Integrating genotypic and expression data in a segregating mouse population to identify 5-lipoxygenase as a susceptibility gene for obesity and bone traits. Nature Genetics 37: 12241233.CrossRefGoogle Scholar
Meuwissen, T. H. E. and Goddard, M. E. 1996. The use of marker haplotypes in animal breeding schemes. Genetics, Selection, Evolution 28: 161176.CrossRefGoogle Scholar
Moody, D. E., Pomp, D., Newman, S. and MacNeil, M. D. 1996. Characterization of DNA polymorphisms in three populations of hereford cattle and their associations with growth and maternal EPD in line 1. Herefords. Journal of Animal Science 74: 17841793.Google Scholar
Nicoll, G. B., Burkin, H. R., Broad, T. E., Jopson, N. B., Greer, G. J., Bain, W. E., Wright, C. S., Dodds, K. G., Fennessy, P. F. and McEwan, J. C. 1998. Genetic linkage of microsatellite markers to the Carwell locus for rib-eye muscling in sheep. Proceedings of the sixth world congress on genetics applied to livestock production, Armidale, Australia. vol. 26, pp. 529532.Google Scholar
Quintanilla, R., Demeure, O., Bidanel, J. P., Milan, D., Iannuccelli, N., Amigues, Y., Gruand, J., Renard, C., Chevalet, C. and Bonneau, M. 2003. Detection of quantitative trait loci for fat androstenone levels in pigs. Journal of Animal Science 81: 385394.Google Scholar
Seaton, G., Haley, C. S., Knott, S. A., Kearsey, M. and Visscher, P. M. 2002. QTL Express: mapping quantitative trait loci in simple and complex pedigrees. Bioinformatics 18: 339340.CrossRefGoogle ScholarPubMed
Simm, G. and Dingwall, W. S. 1989. Selection indices for lean meat production in sheep. Livestock Production Science 21: 223233.Google Scholar
Spelman, R. J., Coppieters, W., Karim, L., van Arendonk, J. A. M. and Bovenhuis, H. 1996. Quantitative trait loci analysis for five milk production traits on chromosome six in the Dutch Holstein-Friesian population. Genetics 144: 17991808.Google Scholar
Stone, R. T., Keele, J. W., Shackelford, S. D., Kappes, S. M. and Koohmaraie, M. 1999. A primary screen of the bovine genome for quantitative trait loci affecting carcass and growth traits. Journal of Animal Science 77: 13791384.Google Scholar
Vilkki, H. J., De Koning, D. J., Elo, K., Velmala, R. and Maki-Tanila, A. 1997. Multiple marker mapping of quantitative trait loci of Finnish dairy cattle by regression. Journal of Dairy Science 80: 198204.CrossRefGoogle ScholarPubMed
Visscher, P. M., Thompson, R. and Haley, C. S. 1996. Confidence intervals in QTL mapping by bootstrapping. Genetics 143: 10131020.CrossRefGoogle ScholarPubMed
Walling, G. A., Archibald, A. L., Visscher, P. M. and Haley, C. S. 1998. Mapping genes for growth rate and fatness in a Large White×Meishan F2 pig population. Proceedings of the British Society of Animal Science, 1998, p. 7.Google Scholar
Walling, G. A., Visscher, P. M., Simm, G. and Bishop, S. C. 2001. Confirmed linkage for QTLs affecting muscling in Texel sheep on chromosome 2 and 18. Proceedings of the 52nd annual meeting of the European Association for Animal Production, Budapest 59.Google Scholar
Walling, G. A., Visscher, P. M., Wilson, A. D., McTeir, B. L., Simm, G. and Bishop, S. C. 2004. Mapping of quantitative trait loci for growth and carcass traits in commercial sheep populations. Journal of Animal Science 82: 22342245.CrossRefGoogle ScholarPubMed
Yokoyama, M. T., Carlson, J. R. and Dickinson, E. O. 1975. Ruminal and plasma concentrations of 3-methylindole associated with tryptophan-induced pulmonary edema and emphysema in cattle. American Journal of Veterinary Research 36: 13491352.Google Scholar
Young, O. A., Berdague, J.-L., Viallon, C., Rousset-Akrim, S. and Theriez, M. 1997. Fat-borne volatiles and sheepmeat odour. Meat Science 45: 183200.Google Scholar
Young, O. A., Braggins, T. J., West, J. and Lane, G. A. 1999. Animal production origins of some meat color and flavor attributes. In Quality attributes of muscle foods (ed. Xiong, Y. L., Ho, C. T., Shahidi, F.), pp. 1130. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Young, O. A., Lane, G. A., Priolo, A. and Fraser, K. 2003. Pastoral and species flavor in lambs raised on pasture, lucerne or maize. Journal of the Science of Food and Agriculture 83: 93104.Google Scholar
Zeng, Z. B. 1993. Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America 90: 1097210976.CrossRefGoogle ScholarPubMed