Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Kim, J.S.
Jin, D.I.
Lee, J.H.
Son, D.S.
Lee, S.H.
Yi, Y.J.
and
Park, C.S.
2005.
Effects of teat number on litter size in gilts.
Animal Reproduction Science,
Vol. 90,
Issue. 1-2,
p.
111.
Norring, Marianna
Valros, Anna
Munksgaard, Lene
Puumala, Maarit
Kaustell, Kim O.
and
Saloniemi, Hannu
2006.
The development of skin, claw and teat lesions in sows and piglets in farrowing crates with two concrete flooring materials.
Acta Agriculturae Scandinavica, Section A - Animal Science,
Vol. 56,
Issue. 3-4,
p.
148.
Jonas, Elisabeth
Schreinemachers, Heinz-Josef
Kleinwächter, Tina
Ün, Cemal
Oltmanns, Ina
Tetzlaff, Sylvio
Jennen, Danyel
Tesfaye, Dawid
Ponsuksili, Siriluck
Murani, Eduard
Juengst, Heinz
Tholen, Ernst
Schellander, Karl
and
Wimmers, Klaus
2008.
QTL for the heritable inverted teat defect in pigs.
Mammalian Genome,
Vol. 19,
Issue. 2,
p.
127.
Chomwisarutkun, K.
Murani, E.
Ponsuksili, S.
and
Wimmers, K.
2012.
Microarray analysis reveals genes and functional networks relevant to the predisposition to inverted teats in pigs1.
Journal of Animal Science,
Vol. 90,
Issue. 1,
p.
1.
Chomwisarutkun, K.
Murani, E.
Brunner, R.
Ponsuksili, S.
and
Wimmers, K.
2013.
QTL region–specific microarrays reveal differential expression of positional candidate genes of signaling pathways associated with the liability for the inverted teat defect.
Animal Genetics,
Vol. 44,
Issue. 2,
p.
139.
Prunier, Armelle
Lubac, Stanislas
Mejer, Helena
Roepstorff, Allan
and
Edwards, Sandra
2014.
Health, welfare and production problems in organic suckling piglets.
Organic Agriculture,
Vol. 4,
Issue. 2,
p.
107.
Lee, Jae-Bong
Jung, Eun-Ji
Park, Hee-Bok
Jin, Shil
Seo, Dong-Won
Ko, Moon-Suck
Cho, In-Cheol
Lee, Jun-Heon
and
Lim, Hyun-Tae
2014.
Genome-wide association analysis to identify SNP markers affecting teat numbers in an F2 intercross population between Landrace and Korean native pigs.
Molecular Biology Reports,
Vol. 41,
Issue. 11,
p.
7167.
Verardo, L. L.
Silva, F. F.
Varona, L.
Resende, M. D. V.
Bastiaansen, J. W. M.
Lopes, P. S.
and
Guimarães, S. E. F.
2015.
Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs.
Journal of Applied Genetics,
Vol. 56,
Issue. 1,
p.
123.
Tan, Cheng
Wu, Zhenfang
Ren, Jiangli
Huang, Zhuolin
Liu, Dewu
He, Xiaoyan
Prakapenka, Dzianis
Zhang, Ran
Li, Ning
Da, Yang
and
Hu, Xiaoxiang
2017.
Genome-wide association study and accuracy of genomic prediction for teat number in Duroc pigs using genotyping-by-sequencing.
Genetics Selection Evolution,
Vol. 49,
Issue. 1,
Chalkias, Helena
Jonas, Elisabeth
Andersson, Lisa S.
Jacobson, Magdalena
de Koning, Dirk Jan
Lundeheim, Nils
and
Lindgren, Gabriella
2017.
Identification of novel candidate genes for the inverted teat defect in sows using a genome-wide marker panel.
Journal of Applied Genetics,
Vol. 58,
Issue. 2,
p.
249.
Uzzaman, Md. Rasel
Park, Jong-Eun
Lee, Kyung-Tai
Cho, Eun-Seok
Choi, Bong-Hwan
and
Kim, Tae-Hun
2018.
Whole-genome association and genome partitioning revealed variants and explained heritability for total number of teats in a Yorkshire pig population.
Asian-Australasian Journal of Animal Sciences,
Vol. 31,
Issue. 4,
p.
473.
Bergman, Paula
Gröhn, Yrjö Tapio
Rajala-Schultz, Päivi
Virtala, Anna-Maija
Oliviero, Claudio
Peltoniemi, Olli
and
Heinonen, Mari
2018.
Sow removal in commercial herds: Patterns and animal level factors in Finland.
Preventive Veterinary Medicine,
Vol. 159,
Issue. ,
p.
30.