Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-04T19:44:20.994Z Has data issue: false hasContentIssue false

Inclusion of grape pomace, in substitution for alfalfa hay, in diets for growing rabbits

Published online by Cambridge University Press:  02 September 2010

W. Motta Ferreira
Affiliation:
Departamento de Producción Animal, Escuela Tecnica Superior de Ingenieros Agrónomos, Universidad Politécnica, 28040 Madrid, Spain
M. J. Fraga
Affiliation:
Departamento de Producción Animal, Escuela Tecnica Superior de Ingenieros Agrónomos, Universidad Politécnica, 28040 Madrid, Spain
R. Carabañco
Affiliation:
Departamento de Producción Animal, Escuela Tecnica Superior de Ingenieros Agrónomos, Universidad Politécnica, 28040 Madrid, Spain
Get access

Abstract

Four diets were formulated to study the effect of a progressive substitution of grape pomace (GP) for alfalfa hay (AH) at the rates 0, 100, 200 and 300 g/kg total weight. The control diet contained 500 g AH and 192 g acid-detergent fibre per kg dry matter (DM). In experiment 1, 32 Californian × New Zealand White rabbits were used to determine dietary nutrient apparent digestibility. The inclusion of GP decreased the apparent digestibility of crude protein (P < 0·001) and energy (P < 0·05). However, the digestible energy (DE) contents of the diets were similar because GP had a greater gross energy content than AH. In experiment 2, 36 rabbits given the same diets as in experiment 1 were used to determine several digestive and productive traits and chemical body composition (at 20kg live weight). Dietary inclusion of GP linearly decreased ammonia (P < 0·01), total volatile fatty acid concentration (P < 0·001) and the molar proportion of acetate (P < 0·05) in the caecum. Starch content in the Heal and caecal contents was low but linearly increased (P < 0·05) with increasing dietary concentration of GP. The average daily gain (from weaning at 30 days of age to 2·0 kg live weight) was not significantly affected (P > 0·10) by the diet, but the ratio gain: food linearly decreased (P < 0·001) with the GP inclusion. Dietary inclusion of GP linearly increased (P < 0·10) the fat content of the empty body of the rabbits. The efficiency of utilization of dietary DE and protein for growth were calculated by the comparative slaughter method, using the chemical body composition data of 22 suckling rabbits slaughtered at 30 days of age for the initial body composition. The efficiency of utilization of DE was not influenced by dietary GP inclusion, but GP linearly increased (P < 0·01) digestible crude protein utilization. The decrease in crude protein apparent digestibility may be the main reason that gain: food ratio was impaired in diets containing GP substituted for AH.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists. 1984. Official methods of analysis. 14th ed. Association of Official Analytical Chemists, Washington, DC.Google Scholar
Bias, J. C. de, Fraga, M. J. and Rodríguez, J. M. 1985. Units for feed evaluation and requirements for commercially grown rabbits. Journal of Animal Science 60: 10211027.Google Scholar
Bias, J. C. de, Santomá, G., Carabaño, R. and Fraga, M. J. 1986. Fiber and starch levels in fattening rabbit diets. Journal of Animal Science 63: 18971904.CrossRefGoogle Scholar
Bias, J. C. de, Villamide, M. J. and Carabano, R. 1989. Nutritive value of cereal by-products for rabbits. 1. Wheat straw. Journal of Applied Rabbit Research 12: 148151.Google Scholar
Broadhurst, R. B. and Jones, W. T. 1978. Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture 29: 788794.CrossRefGoogle Scholar
Cheeke, P. R. 1974. Feed preferences of adult male Dutch rabbits. Laboratory Animal Science 24: 601604.Google ScholarPubMed
Dumont, R. and Tisserand, J. L. 1978. Valeur alimentaire du marc du raisin deshydrate. Annales de Zootechnie 27: 631637.CrossRefGoogle Scholar
Falçao e Cunha, L. and Lebas, F. 1986. Influence chez le lapin adulte de l'origin et du taux de lignine alimentaire sur la digestibilite de la ration et l'importance de la cecotrophie. Quatrièmes journées de la recherche cunicole en France, communication 8.Google Scholar
Fernández, C. and Fraga, M. J. 1992. Effect of sources and inclusion level of fat on growth performance. Journal of Applied Rabbit Research 15: 10711078.Google Scholar
García, G., Gálvez, J. F. and Bias, J. C. de. 1993. Effect of substitution of sugarbeet pulp for barley in diets for finishing rabbits on growth performance and on energy and nitrogen efficiency. Journal of Animal Science 71: 18231830.CrossRefGoogle ScholarPubMed
Jansman, A. J. M., Huisman, J. and Foel, A. F. B. van der. 1993. Heal and faecal digestibility in piglet of field beans (Vidafaba L.) varying in tannin content. Animal Feed Science and Technology 42: 8396.CrossRefGoogle Scholar
Lebas, F. 1980. Les recherches sur l'alimentation du lapin: evolution au cours des 20 demiers années et perspectives d'avenir. Proceedings of the second world rabbit congress, Barcelona, pp. 117.Google Scholar
Longstaff, M. and McNab, J. M. 1986. Influence of site and variety on starch, hemicellulose and cellulose composition of wheats and their digestibilities by adult cockerels. British Poultry Science 27: 435449.CrossRefGoogle Scholar
Maertens, L. and de Groote, G. 1984. Digestibility and digestible energy content of a number of feedstuffs for rabbits. Proceedings of the third world rabbit congress, Roma, pp. 224251.Google Scholar
Maertens, L., Moermans, R. and de Groote, G. 1988. Prediction of the apparent digestible energy content of commercial pelleted feeds for rabbits. Journal of Applied Rabbit Research 11: 6067.Google Scholar
Marquardt, R. R. 1989. Dietary effects of tannins. In Recent advances of research in antinutritional factors in legume (ed. Huisman, U. J., Poel, A. F. B. van der and Liener, I. E.), pp. 141155. PUDOC, Wageningen.Google Scholar
Martinez, J. and Fernández, J. 1980. Composition, digestibilidad, valor nutritivo y relaciones entre ambos de diversos piensos para conejos. Proceedings of the second world rabbit congress, Barcelona, pp. 214223.Google Scholar
Mascarenhas Ferreira, A., Kerstens, J. and Gast, C. H. 1983. The study of several modifications of the neutral detergent fibre procedure. Animal Feed Science and Technology 9: 1928CrossRefGoogle Scholar
Merino, J. M. and Carabaño, R. 1992. Effect of type of fibre on ileal and fecal digestibilities. Journal of Applied Rabbit Research 15: 931937.Google Scholar
Parigi-Bini, R. and Chiericato, G. M. 1980. Utilization of grape marc by growing rabbits. Proceedings of the second world rabbit congress, Barcelona, pp. 204213.Google Scholar
Partridge, G. G., Garthwaite, P. H. and Findlay, M. 1989. Protein and energy retention by growing rabbits offered diets with increasing proportions of fibre. Journal of Agricultural Science, Cambridge 112: 171178.CrossRefGoogle Scholar
Pérez de Ayala, P., Fraga, M. J., Carabaño, R. and Bias, J. C. de. 1991. Effect of fibre source on diet digestibility and growth in fattening rabbits. Journal of Applied Rabbit Research 14: 159165.Google Scholar
Pote, L. M., Cheeke, P. R. and Patton, N. M. 1980. Utilization of diets high in alfalfa meal by weanling rabbits. Journal of Applied Rabbit Research 3: 510.Google Scholar
Robertson, J. B. and Van Soest, P. J. 1981. Dietary fiber estimation in concentrate feedstuffs. Journal of Animal Science 45: (Suppl. 1) 254 (abstr.).Google Scholar
Santomá, G., Bias, J. C. de, Carabano, R. and Fraga, M. J. 1989. Nutrition of rabbits. In Recent advances in animal nutrition (ed. Haresign, W. and Cole, D. J. A.), pp. 109138. Butterworths, London.CrossRefGoogle Scholar
Spanish Royal Decree 223/88. 1988. Sobre protectión de los animales utilizados para experimentatión y otros fines cientificos. Boletin Oficial del Estado. no. 67, pp. 85098511.Google Scholar
Statistical Analysis Systems Institute. 1985. SAS user's guide: statistics, version 5. SAS Institute Inc., Cary, NC.Google Scholar
Treviño, J., Ortiz, L. and Centeno, C. 1992. Effect of tannins from faba beans (Vicia faba) on the digestion of starch by growing chicks. Animal Feed Science and Technology 37: 345349.CrossRefGoogle Scholar
Van Soest, P. J. 1963. Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists 46: 828835.Google Scholar
Van Soest, P. J., Conklin, N. L. and Horvath, P. J. 1987. Tannins in foods and feeds. In 2987 Cornell nutrition conference, pp. 115122. Ithaca, NY.Google Scholar
Waghorn, G. C., Ulyatt, M. J., John, A. and Fisher, M. T. 1987. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L. British Journal of Nutrition 57: 115126.CrossRefGoogle ScholarPubMed