Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T20:52:23.508Z Has data issue: false hasContentIssue false

Genetically modified soya bean in rabbit feeding: detection of DNA fragments and evaluation of metabolic effects by enzymatic analysis

Published online by Cambridge University Press:  09 March 2007

R. Tudisco
Affiliation:
Dipartimento di Scienze Zootecniche e Ispezione degli Alimenti, sez. B. Ferrara, Università di Napoli Federico II, Italy
P. Lombardi
Affiliation:
Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Italy
F. Bovera
Affiliation:
Dipartimento di Scienze Zootecniche e Ispezione degli Alimenti, sez. B. Ferrara, Università di Napoli Federico II, Italy
D. dˇAngelo
Affiliation:
Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Italy
M. I. Cutrignelli
Affiliation:
Dipartimento di Scienze Zootecniche e Ispezione degli Alimenti, sez. B. Ferrara, Università di Napoli Federico II, Italy
V. Mastellone
Affiliation:
Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Italy
V. Terzi
Affiliation:
Istituto Sperimentale per la Cerealicoltura, Fiorenzuola dˇArda (Piacenza), Italy
L. Avallone
Affiliation:
Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Italy
F. Infascelli*
Affiliation:
Dipartimento di Scienze Zootecniche e Ispezione degli Alimenti, sez. B. Ferrara, Università di Napoli Federico II, Italy
*
Corresponding author. E-mail: [email protected]
Get access

Abstract

The presence of DNA fragments in tissues from rabbits given genetically modified (GM) soya-bean meal (solvent extracted) was investigated by using the polymerase chain reaction (PCR) approach. Moreover, the possible effects on cell metabolism were evaluated by determination of several specific enzymes in serum, heart, skeletal muscle, liver and kidney. The chloroplast sequence for tRNA Leu by using the Clor1/Clor2 primers designed on chloroplast trnL sequence was clearly detected. On the contrary, two couples of species specific primers for conventional (Le1-5/Le 1-3 which amplifies the soya bean lectin gene) and genetically modified (35S1/35S2 which amplifies the 35S CMV promoter that is present in the genomic structure of GM soya bean) soya bean were not found in all samples. No differences in enzyme levels were detected in serum, but a significant increase of lactic dehydrogenase, mainly concerning the LDH1 isoenzyme was found in particular in kidney and heart but not in the muscle, thus suggesting a potential alteration in the local production of the enzyme. Finally, no significant differences were detected concerning body weight, fresh organ weights and no sexual differences were detected.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aeschbacher, K., Meile, L., Messikommer, R. and Wenk, C. 2002. Influence of genetically modified maize on performance and product quality of chickens. Proceedings Society Nutrition Physiology 11: 196.Google Scholar
Artim, L., Charlton, S., Dana, G., Faust, M., Glenn, K., Hartnell, G., Hunst, P., Jennings, J. and Shillito, R. 2001. Animal performance trials with bt crops. Biotechnology of Bacillus thuringiensis and its environmental impact. Australian National University of Canberra S61 (abstr.).Google Scholar
Association of Official Analytical Chemists. 1990. Official methods of analysis, 15th edition, Washington, DC.Google Scholar
Aumaitre, A. 2004. Safety assessment and feeding value for pigs, poultry and ruminant animals of pest protected (Bt) plants, herbicide tolerant (glyphosate, gluphosinate) plants: interpretation of experimental results observed worldwide on GM plants. Italian Journal of Animal Science 2: 107121.CrossRefGoogle Scholar
Aumaitre, A., Aulrich, K., Chesson, A., Flachowsky, G. and Piva, G. 2002. New feeds from genetically modified plants: substantial equivalence, nutritional equivalence, digestibility, and safety for animals and the food chain. Livestock Production Science 74: 223238.CrossRefGoogle Scholar
Chambers, P. A., Duggan, P. S., Heritage, J. and Forbes, J. M. 2002. The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. Journal of Antimicrobial Chemotherapy 49: 161164.CrossRefGoogle ScholarPubMed
Chiter, A., Forbes, J. M. and Blair, G. E. 2000. DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Letters 481: 164168.Google Scholar
Chowdhury, E. H., Kuribara, H., Hino, A., Sultana, P., Mikami, O., Shimada, N., Guruge, K. S., Saito, M. and Nakajiama, Y. 2003. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. Journal of Animal Science 81: 25462551.Google Scholar
Cromwell, G. L., Lindemann, M. D., Randolph, J. H., Parker, G. R., Coffey, R. D., Laurent, K. M., Armstrong, C. L., Mikel, W. B., Stanisiewski, E. P. and Hartnell, G. F. 2002. Soybean meal from Roundup Ready or conventional soybeans in diets for growing-finishing swine. Journal of Animal Science 80: 708715.Google Scholar
Duggan, P. S., Cambers, P. A., Heritage, J. and Forbes, J. M. 2003. Fate of genetically modified maize DNA in the oral cavity and rumen of sheep. British Journal of Nutrition 89: 159166.Google Scholar
European Food Safety Authority. 2004. Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. The EFSA Journal 99: 194.Google Scholar
Einspanier, R., Klotz, A., Kraft, J., Aulrich, K., Poser, R., Schwägele, F.Jahreis, G. and Flachowsky, G. 2001. The fate of forage plant DNA in farm animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. European Food Research Technologies 212: 129134.Google Scholar
Einspanier, R., Lutz, B., Rief, S., Berezina, O., Zverlov, V., Scwarz, W. and Mayer, J. 2004. Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. European Food Research Technology 218: 269273.Google Scholar
Food and Agriculture Organisation/World Health Organisation. 2000. Safety aspects of genetically modified foods of plant origin. Report of a joint FAO/WHO expert consultation on foods derived from biotechnology, Geneva, Switzerland, 2000, Food and Agriculture Organisation of the United Nations, Rome.Google Scholar
Forbes, J. M., Blair, G. E., Chiter, A. and Perks, S. 1998. Effect of feed processing conditions on DNA fragmentation. UK MAFF Report CS0116. Her Majesty's Stationery Office, London.Google Scholar
Hino, A. 2002. Safety assessment and public concerns for genetically modified food products: the Japanese experience. Toxicology and Pathology 30: 126128.Google Scholar
Jennings, J. C., Kolwyck, D. C., Kats, S. B., Whetsell, A. J., Surber, J. B., Cromwell, G. L., Lirette, R. P. and Glenn, K. C. 2003. Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. Journal Animal Science 81: 14471455.CrossRefGoogle ScholarPubMed
Klotz, A., Mayer, J. and Einspanier, R. 2002. Degradation and possible carry over of feed DNA monitored in pigs ad poultry. European Food Research Technology 214: 271275.Google Scholar
Kuribara, H., Shindo, Y., Matsuoka, T., Takubo, K., Futo, S., Aoki, N., Hirao, T., Ariyama, H., Goda, Y., Toyoda, M. and Hino, A. 2002. Novel reference molecules for quantitation of genetically modified maize and soybean. Journal of AOAC International 85: 10771089.Google Scholar
Lipp, M., Brodmann, P., Pietsch, K., Pauwels, J. and Anklam, E. 1999. IUPAC collaborative study of a method to detect genetically modified soybean and maize in dried powder. Journal of AOAC International 82: 923929.CrossRefGoogle ScholarPubMed
Malatesta, M., Caporaloni, C., Gavaudan, S., Rocchi, M. B., Serafini, S., Tiberi, C. and Gazzanelli, G. 2002. Ultrastructural morphometrical and immunocytochemical analyses of hepatocyte nuclei from mice fed on genetically modified soybean. Cell Structure and Function 27: 173180.CrossRefGoogle ScholarPubMed
Martìn-Orùe, S. M., O'Donnell, A. G., Arino, J., Netherwood, T., Gilbert, H. J. and Mathers, J. C. 2002. Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. British Journal of Nutrition 87: 533542.CrossRefGoogle ScholarPubMed
Netherwood, T., Martìn-Orùe, S. M., O'Donnell, A. G., Gockling, S., Graham, J., Mathers, J. C. and Gilbert, H. J. 2004. Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nature Biotechnology 22: 16.Google Scholar
Organisation for Economic Co-operation and Development. 2003. Considerations for the safety assessment of animal feedstuffs derived from genetically modified plants. Series on the Safety of Novel Foods and Feeds, no. 9. OECD, Paris.Google Scholar
Phipps, R. H., Deaville, E. R. and Maddison, B. C. 2003. Detection of transgenic and endogenous plant DANN in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. Journal of Dairy Science 86: 40704078.Google Scholar
Reuter, T. and Aulrich, K. 2003. Investigations on genetically modified maize (Bt-maize) in pig nutrition: fate of feed-ingested foreign DNA in pig bodies. European Food Research Technology 216: 185192.Google Scholar
Sawyer, J., Wood, C., Shanahan, D., Gout, S. and McDowell, D. 2003. Real-time PCR for quantitative meat species testing. Food Control 14: 579583.CrossRefGoogle Scholar
Statistical Packages for the Social Sciences. 1999. SPSS for Windows. SPSS Inc., Chicago.Google Scholar
Terzi, V., Infascelli, F., Tudisco, R., Russo, G., Stanca, A. M. and Faccioli, P. 2004. Quantitative detection of Secale cereale by real-time PCR amplification. Lebensmittel Wissenschaft und Technologie 37: 239246.Google Scholar
Tony, M. A., Butschke, A., Broll, H., Grohmann, L., Zagon, J., Halle, I., Dänicke, S., Schauzu, M., Hafez, H. M. and Flachowsky, G. 2003. Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Archive of Animal Nutrition 57: 235252.Google Scholar
Van Hall, G. 2000. Lactate as a fuel for mitochondrial respiration. Acta Physiologica Scandinavica 168: 643656.CrossRefGoogle ScholarPubMed
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.CrossRefGoogle ScholarPubMed
Yonemochi, C., Fujisaki, H., Harada, C., Kusama, T. and Hanazumi, M. 2002. Evaluation of transgenic event CBH 351 (StarLink) corn in broiler chicks. Animal Science Journal 73: 221228.Google Scholar
Yonemochi, C., Ikeda, T., Harada, C., Kusama, T. and Hanazumi, M. 2003. Influence of transgenic corn (CBH 351, named Starlink) on health condition of dairy cows and transfer of Cry9C protein and cry9C gene to milk, blood, liver and muscle. Animal Science Journal 74: 8188.Google Scholar