Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T13:12:55.707Z Has data issue: false hasContentIssue false

Field data analysis of cytoplasmic inheritance of dairy and fitness-related traits in cattle

Published online by Cambridge University Press:  18 August 2016

S. Schnitzenlehner
Affiliation:
Department of Livestock Sciences, University of Agricultural Sciences Vienna, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria
A. Essl
Affiliation:
Department of Livestock Sciences, University of Agricultural Sciences Vienna, Gregor-Mendel-Strasse 33, A-1180 Vienna, Austria
Get access

Abstract

Field data of the Austrian Simmental population were analysed using restricted maximum likelihood (REML) with an animal model where additive direct, additive maternal and cytoplasmic effects were treated as random and the effect of the year of first calving as fixed. Traits analysed were milk yield, fat and protein content, persistency, days open and herd life. All dairy traits were pre-adjusted for best linear unbiased prediction (BLUP) herd-year effects, milk yield additionally for season, age at first calving and days open. After applying specific data restrictions, the number of records for the various traits ranged from 3360 to 51889. Identification of cow lineages was based on pedigree information from the official milk recording scheme, with a span of at least four and up to 16 generations. The number of lineages per trait varied and ranged from 484 to 3195, with an average size of 15 members (for herd life 7). Evaluations of the relevant variance components for the dairy and fitness-related traits investigated were separate for the first three lactations.

The estimated variance components for cytoplasmic effects were close to zero for all dairy traits with the exception of first lactation milk yield, where a significant value of 2.0% of the total phenotypic variance was found. Significant contributions of cytoplasmic lineages to total variance in all lactations, however, were estimated for persistency (2·6 to 3.8%), days open (1·8 to 2.9%) and for both true and functional herd life (4.6% each). The portions of additive maternal variance and covariance between additive direct and additive maternal effects on total variance were very close to zero for all traits investigated. The maximum differences between BLUP lineage effects were 373 kg for first lactation milk yield, 44 days for days open (first lactation), 1·6 and 2·8 years for true and functional herd life and, on average, 1·0 kg for standard deviation of test day milk yields (persistency) of the first three lactations.

Removing the cytoplasmic effect from the model led to increased estimates of the additive direct heritability. Further model aspects such as interaction between additive and cytoplasmic gene effects and possible confounding between cytoplasmic and herd effects are discussed.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. 1994. Molecular biology of the cell, third edition. Garland Publishing Inc., New York.Google Scholar
Albuquerque, L. G., Keown, J. F. and Van Vleck, L. D. 1998. Variances of direct genetic effects, maternal genetic effects and cytoplasmic inheritance effects for milk yield, fat yield, and fat percentage. Journal of Dairy Science 81: 544549.CrossRefGoogle ScholarPubMed
Anderson, S., DeBruijn, M. H. L., Coulson, A. R., Eperon, I. C., Sanger, F. and Young, I. G. 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. Journal of Molecular Biology 156: 683717.CrossRefGoogle ScholarPubMed
Bell, B. R., McDaniel, B. T. and Robison, O. W. 1985. Effects of cytoplasmic inheritance on production traits of dairy cattle. Journal of Dairy Science 68: 20382051.CrossRefGoogle ScholarPubMed
Boettcher, P. J., Freeman, A. E., Johnston, S. D., Smith, R. K., Beitz, D. C. and McDaniel, B.T. 1996a. Relationships between polymorphism for mitochondrial deoxyribonucleic acid and yield traits of Holstein cows. Journal of Dairy Science 79: 647654.CrossRefGoogle ScholarPubMed
Boettcher, P. J., Kuhn, M. T. and Freeman, A. E. 1996b. Impacts of cytoplasmic inheritance on genetic evaluations. Journal of Dairy Science 79: 663675.CrossRefGoogle ScholarPubMed
Boettcher, P. J., Steverink, D. W.B., Beitz, D.C, Freeman, A. E. and McDaniel, B.T. 1996c. Multiple herd evaluation of the effects of maternal lineage on yield traits of Holstein cattle. Journal of Dairy Science 79 : 655662.CrossRefGoogle ScholarPubMed
Ducrocq, V. P. 1987. An analysis of length of productive life in dairy cattle. Ph.D. thesis, Cornell University, Ithaca.Google Scholar
Dzapo, V., Schnarr, W. and Wassmuth, R. 1983. Mitochondrialer Stoffwechsel und heterotische Effekte beim Schwein. Ergebnisse eines reziproken Kreuzungsversuchs.CrossRefGoogle Scholar
Dzapo, V., Schnarr, W. and Wassmuth, R.. Reproduktionsleistung. Wachstumsintensität und Schlachtkörperqualität. Zeitschrift für Tierzüchtung und Züchtungsbiologie 100: 109122.CrossRefGoogle Scholar
Essi, A. 1979. Biometrie relations between some population parameters for milk yield, fat content, fat yield and fat-corrected milk yield. Zeitschrift für Tierzüchtung und Züchtungsbiologie 95: 204210.Google Scholar
Fox, J. 1984. Linear statistical models and related methods. Wiley, New York.Google Scholar
Gibson, J. P., Freeman, A. E. and Boettcher, P. J. 1997. Cytoplasmic and mitochondrial inheritance of economic traits in cattle. Livestock Production Science 47: 115124.CrossRefGoogle Scholar
Giles, R.E., Blanc, H., Conn, H. M. and Wallace, D. C. 1980. Maternal inheritance of human mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 77: 67156719.CrossRefGoogle ScholarPubMed
Gilmour, A. R. 1995. AAREML, Arthur’s AI REML program. User’s manual.Google Scholar
Gilmour, A. R., Thompson, R. and Cullis, B. R. 1995. Average information REML: an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51: 14401450.CrossRefGoogle Scholar
Gyllensten, U., Wharton, D. and Wilson, A. C. 1985. Maternal inheritance of mitochondrial DNA during backcrossing of two species of mice. Journal of Heredity 76: 321324.CrossRefGoogle ScholarPubMed
Henderson, C. R. 1972. Sire evaluation and genetic trends. Animal breeding and genetics symposium in honor of J. L. Lush, Champaign IL. ASAS and ADS A, pp. 1041.Google Scholar
Holm, T. 1979. A simple sequential rejective multiple test procedure. Canadian Journal of Statistics 6: 6570.Google Scholar
Huizinga, H. A., Korver, S., McDaniel, B. T. and Politiek, R. D. 1986. Maternal effects due to cytoplaslmic inheritance in dairy cattle. Influence on milk production and reproduction traits. Livestock Production Science 15: 1126.CrossRefGoogle Scholar
Hutchison, C. A., Newbold, J. E., Potter, S. S. and Edgell, M. H. 1974. Maternal inheritance of mammalian mitochondrial DNA. Nature 251: 536538.CrossRefGoogle ScholarPubMed
Kennedy, B. W. 1986. A further look at evidence for cytoplasmic inheritance of production traits in dairy cattle. Journal of Dairy Science 69: 31003105.CrossRefGoogle Scholar
Knippers, R. 1995. Molekulare Genetik (sixth edition). Thieme Verlag, Stuttgart, New York.Google Scholar
Laipis, P. J. and Hauswirth, W. W. 1980. Variation in bovine mitochondrial DNA between maternally related animals. In Organisation and expression of the mitochondrial genome (ed. Kroon, A. M. and Saccone, C), pp. 125130. Elsevier-North Holland, Amsterdam.Google Scholar
Onken, F. 1993. Populationsgenetische Untersuchungen zur zytoplasmatischen Vererbung beim Milchrind. Ph.D. thesis, Institut für Tierzucht und Haustiergenetik, Georg- August-University, Göttingen, Germany.Google Scholar
Raaber, S. 1997. Schätzung zytoplasmatischer Geneffekte für wichtige Produktions- und Reproduktionsmerkmale beim österreichischen Fleckvieh. Ph.D. thesis, University of Agricultural Sciences, Vienna.Google Scholar
Raaber, S. and Essi, A. 1996. Schätzung zytoplasmatischer Effekte für Milch-, Fleisch- und Reproduktionsmerkmale beim Rind aufgrund von Stationsdaten. Züchtungskunde 68: 178192.Google Scholar
Reed, P. D. and Van Vleck, L. D. 1987. Lack of evidencie of cytoplasmic inheritance in milk production traits of dairy cattle. Journal of Dairy Science 70: 837841.CrossRefGoogle Scholar
Ron, M., Yoffe, O. and Weiler, J. I. 1993. Sequence variation in D-loop mtDNA of cow lineages selected for I high and low maternal effects on milk production. Animal Genetics 24: 183186.CrossRefGoogle ScholarPubMed
Rothschild, M. F. and Olivier, L. 1987. Expectation of I variance due to mitochondrial genes from several mating I designs. Génétique, Sélection, Evolution 19: 171180.CrossRefGoogle Scholar
Saar, W. and Schüler, L. 1995. Biologisch-genetische Grundlagen des Imprinting-Phänomens und abgeleitete Prinzipien für den experimentellen Nachweis bei Modelltieren. Archiv für Tierzucht, Dummersdorf 38 2 219233.Google Scholar
Salehi, A. and James, J. W. 1997. Detection of cytoplasmic effects on production: the influence of number of years of data. Genetics, Selection, Evolution 29: 269277.CrossRefGoogle Scholar
Sapienza, C. 1995. Genome imprinting: an overview. Developmental Genetics 17: 185187.CrossRefGoogle ScholarPubMed
Schutz, M. M., Freeman, A. E., Beitz, D. C. and Mayfield, J. E. 1992. The importance of maternal lineage on milk yield traits in dairy cattle. Journal of Dairy Science 75: 13311341.CrossRefGoogle ScholarPubMed
Schutz, M. M., Freeman, A. E., Lindberg, G. L., Koehler, C. M. and Beitz, D. C. 1994. The effect of mitochondrial DNA on milk production and health of dairy cattle. Livestock Production Science 37: 283295.CrossRefGoogle Scholar
Searle, S. R. 1971. Linear models. Wiley, New York.Google Scholar
Searle, S. R. 1989. Variance components — some history and summary account of estimation methods. Journal of Animal Breeding and Genetics 106: 129.CrossRefGoogle Scholar
Seykora, A. and McDaniel, B. T. 1983. Heritabilities and I correlations of lactation yields and fertility in Holsteins. Journal of Dairy Science 66: 14861493.CrossRefGoogle ScholarPubMed
Sölkner, J. and Fuchs, W. 1987. A comparison of different measures of persistency with special respect to variation of test-day milk yields. Livestock Production Science 16: 305319.CrossRefGoogle Scholar
Southwood, O. I., Kennedy, B. W., Meyer, K. and Gibson, J. P. 1989. Estimation of additive maternal and cytoplasmic genetic variances in animal models. Journal of Dairy Science 72: 30063012.CrossRefGoogle ScholarPubMed
Tess, M. W. and Robison, O. W. 1990. Evaluation of cytoplasmic genetic effects in beef cattle using an animal model. Journal of Animal Science 68: 18991909.CrossRefGoogle ScholarPubMed
Van Vleck, L. D. and Bradford, G. E. 1965. Comparison of heritability estimates from daughter-dam regression and paternal half-sib correlations. Journal of Dairy Science 48: 13721375.CrossRefGoogle Scholar
Visscher, P. M. and Thompson, R. 1992. Comparions between genetic variances estimated from different types of relatives in dairy cattle. Animal Production 55: 315320.Google Scholar
Wallace, D.C, Bohr, V. A., Cortopassi, G., Kadenbach, B., Linn, S., Linnane, A. W., Richter, C. and Shay, J. W. 1994. The role of biogenetics and mitochondrial DNA mutations in aging and age-related diseases. Group report. In Molecular aspects of aging (ed. K., Esser and Martin, G. M.), p. 199. John Wiley and Sons.Google Scholar