Published online by Cambridge University Press: 02 September 2010
Sheep of three hill breeds and the crosses among them were closely inbred for four generations to create five levels with inbreeding coefficients 0·0 (F2/O2), 0·25 (I1,), 0·375 (I2), 0·50 (I3), and 0·59 (I4). Inbred females were also mated to unrelated inbred males of the same breed or crossbred type to produce line-crosses (LC). Mating was arranged so that the effects of inbreeding on the individual could be differentiated from maternal inbreeding. A total of 2369 animals were available up to 78 weeks of age and 1062 to the age of 4 years. This study examines the effects on six linear body dimensions and draws comparison with the effects on body weight. There were significant reductions in the size of the body dimensions with increasing inbreeding but the maximum depression was usually at the I2 stage for individual inbreeding and the I3 stage for maternal inbreeding. Most of the linear and many of the non-linear effects of inbreeding of the individual were significant and the effects of maternal inbreeding were also significant in a majority of cases. Inbreeding effects were more marked for relatively late-maturing parts (shoulder and hook widths) than for early-maturing (cannon bone and tibia lengths) with head width and body length intermediate but closer to the early-maturing parts. This was seen separately at each age, and in the effects of advancing age. By 78 weeks of age, the effects of inbreeding of the individual on absolute size had increased with age and by 4 years of age, in spite of a small recovery in size relative to F2/O2, was still greater than in early life. The effects of maternal inbreeding became progressively less with advancing age relative to non-inbreds. The changes with inbreeding could not be explained by dominance effects alone and epistasis is therefore likely also to be involved.