Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T09:29:54.776Z Has data issue: false hasContentIssue false

Contribution of altitude and Alpine origin of forage to the influence of Alpine sojourn of cows on intake, nitrogen conversion, metabolic stress and milk synthesis

Published online by Cambridge University Press:  18 August 2016

F. Leiber
Affiliation:
Institute of Animal Science, Federal Institute of Technology (ETH), ETH Centre/LFW, CH-8092 Zürich, Switzerland
B. Jörg
Affiliation:
Institute of Animal Science, Federal Institute of Technology (ETH), ETH Centre/LFW, CH-8092 Zürich, Switzerland
H. Leuenberger
Affiliation:
Institute of Animal Science, Federal Institute of Technology (ETH), ETH Centre/LFW, CH-8092 Zürich, Switzerland
H. -R. Wettstein
Affiliation:
Institute of Animal Science, Federal Institute of Technology (ETH), ETH Centre/LFW, CH-8092 Zürich, Switzerland
Get access

Abstract

A two-factorial experiment was conducted in order to quantify and distinguish the influences of altitude and forage origin on metabolism and milk synthesis of dairy cows kept at Alpine locations. Each of four experimental groups comprised six dairy cows in early to mid lactation which were kept tethered in barns at altitudes of either 2000 (Alpine) or 400 m above sea level (a.s.l.) (lowland). Two groups (Alpine and lowland) received hay ad libitum, a third group kept in the lowlands was pair-fed to the Alpine group and a control group was offered silages and concentrates according to milk yield. Two hay types, with origin either from 2000 or 400 m a.s.l., were offered to all hay-alone groups following a change-over design over three 21-day periods. Transferring cows to high altitude triggered a complex adaptation process, which resulted in depressions of food intake at the beginning of the experiment and changed plasma levels of metabolic traits indicating an energy deficit. On average over the entire experiment, high altitude sojourn elevated plasma β-hydroxybutyrate and decreased plasma glucose levels. Yields of milk and of main milk constituents were not significantly affected, but milk protein content was reduced in both the Alpine and in the pair-fed group. No generally elevated maintenance requirements as a consequence of hypoxia were found. Hay-alone feeding caused a co-limitation of net energy and absorbable protein in both hay types which was almost completely compensated by a reduction of milk yield. The hay of Alpine origin had a lower digestibility and crude protein content than the lowland hay which resulted in changes in blood plasma traits and a further suppression of milk yield and milk protein and lactose contents. Due to the low N content of the Alpine hay, N utilization for milk protein synthesis remained similar to that found with lowland hay, and manure N of these cows contained the lowest proportion of easily-volatile urine N. In conclusion, forage origin in conjunction with diet type seems to explain the major part of the adverse effects that the Alpine sojourn exerts on lactating dairy cows while the effects of hypoxia appear to be of lesser importance.

Type
Ruminant nutrition, behaviour and production
Copyright
Copyright © British Society of Animal Science 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Association of Official Analytical Chemists. 1997. Official methods of analysis. AOAC, Arlington, VA.Google Scholar
Barash, H., Silanikove, N., Sharnay, A. and Ezra, E. 2001. Interrelationships among ambient temperature, day length, and milk yield in dairy cows under a Mediterranean climate. Journal of Dairy Science 84: 23142320.Google Scholar
Berry, N. R., Jewell, P. L., Sutter, F., Edwards, P. J. and Kreuzer, M. 2001a. Effect of concentrate on nitrogen turnover and excretion of P, K, Na, Ca and Mg in lactating cows rotationally grazed at high altitude. Livestock Production Science 71: 261275.CrossRefGoogle Scholar
Berry, N. R., Sutter, F., Bruckmaier, R. M., Blum, J. W. and Kreuzer, M. 2001b. Limitations of high Alpine grazing conditions for early-lactation cows: effects of energy and protein supplementation. Animal Science 73: 149162.Google Scholar
Bianca, W. and Hays, F. L. 1977. Vergleichende Untersuchungen am Rind bei Stallhaltung im Tal und auf der Alp, sowie bei Weidehaltung auf der Alp. Schweizerische Landwirtschaftliche Forschung 16: 215234.Google Scholar
Bianca, W. and Kunz, P. 1978. Physiological reactions of three breeds of goats to cold, heat and high altitude. Livestock Production Science 5: 5769.CrossRefGoogle Scholar
Bianca, W. and Näf, F. 1978. Reaktionen von Rindern auf 4000 m simulierte Höhe in Abhängigkeit vom Alter. Schweizer Archiv für Tierheilkunde 120: 615630.Google Scholar
Bianca, W. and Näf, F. 1979. Responses of cattle to the combined exposure to diurnal temperature rhythm (-5 to 25ºC) and to simulated high altitude (4,000 m). International Journal of Biometeorology 23: 299310.CrossRefGoogle Scholar
Bianca, W. and Puhan, Z. 1974. Untersuchungen über den Einfluss der Luftverdünnung auf einige physiologische Grössen von Kühen sowie auf die Menge und Beschaffenheit der Milch. Schweizerische Landwirtschaftliche Forschung 13: 463489.Google Scholar
Blumthaler, M., Ambach, W. and Rehwald, W. 1992. Solar UV-A and UV-B radiation fluxes at two Alpine stations at different altitudes. Theoretical and Applied Climatology 46: 3944.Google Scholar
Buchin, S., Martin, B., Dupont, D., Bornard, A. and Achilleos, C. 1999. Influence of the composition of Alpine highland pasture on the chemical and sensory properties of cheese. Journal of Dairy Research 66: 579588.Google Scholar
Bugaud, C., Buchin, S., Coulon, J. -B., Hauwuy, A. and Dupont, D. 2001. Influence of the nature of Alpine pastures on plasmin activity, fatty acid and volatile compound composition of milk. Lait 81: 401414.CrossRefGoogle Scholar
Busato, A., Trachsel, P., Schällibaum, M. and Blum, J. W. 2000. Udder health and risk factors for subclinical mastitis in organic farms in Switzerland. Preventive Veterinary Medicine 44: 205220.CrossRefGoogle ScholarPubMed
Christen, R. E., Kunz, P. L., Langhans, W., Leuenberger, H., Sutter, F. and Kreuzer, M. 1996. Productivity, requirements and efficiency of feed and nitrogen utilization of grass-fed early lactating cows exposed to high Alpine conditions. Journal of Animal Physiology and Animal Nutrition 76: 2235.CrossRefGoogle Scholar
Coulon, J.-B. and Pradel, P. 1997. Effect of walking on roughage intake and milk yield and composition of Montbéliarde and Tarantaise dairy cows. Annales de Zootechnie 46: 139146.CrossRefGoogle Scholar
Coulon, J.-B., Verdier, I. and Pradel, P. 1996. Effect of forage type (hay or grazing) on milk cheesemaking ability. Lait 76: 479486.CrossRefGoogle Scholar
Estermann, B. L., Wettstein, H. -R., Sutter, F. and Kreuzer, M. 2001. Nutrient and energy conversion of grass-fed dairy and suckler beef cattle kept indoors and on high altitude pasture. Animal Research 50: 477493.Google Scholar
Gruber, L., Steinwidder, A., Stefanon, B., Steiner, B. and Steinwender, R. 1999. Influence of grassland management in Alpine regions and concentrate level on N excretion and milk yield of dairy cows. Livestock Production Science 61: 155170.Google Scholar
Hauswirth, C. B., Scheeder, M. R. L. and Beer, J. H. 2004. High omega-3 fatty acid content in Alpine cheese – the basis for an Alpine paradox. Circulation 109: 103107.Google Scholar
Kirchgessner, M., Kreuzer, M. and Roth-Maier, D. A. 1986. Milk urea and protein content to diagnose energy and protein malnutrition of dairy cows. Archives of Animal Nutrition 36: 192197.Google ScholarPubMed
Kirchgessner, M. and Windisch, W. 1989. Milchleistung und Milchinhaltsstoffe bei der Milchkuh während und nach Energie- und Proteinmangel. 3. Mitteilung. Journal of Animal Nutrition and Animal Physiology 62: 101110.CrossRefGoogle Scholar
Koch, K., Pirchner, F. and Graf, F. 1995. Physiological parameters and locomotor activities in Fleckvieh- and Friesian-heifers on an Alpine pasture. Berliner und Münchener Tierärztliche Wochenschrift 108: 17.Google Scholar
Kreuzer, M., Langhans, W., Sutter, F., Christen, R. E., Leuenberger, H. and Kunz, P. L. 1998. Metabolic response of early-lactating cows exposed to transport and high altitude grazing conditions. Animal Science 67: 237248.Google Scholar
Lamarche, A., Martin, B., Hauwuy, A., Coulon, J. -B. and Poutrel, B. 2000. Evolution of milk somatic cell count of cows grazing an Alpine pasture according to the infection of udder by pathogens. Annales de Zootechnie 49: 4554.Google Scholar
Leiber, F., Nigg, D., Kreuzer, M. and Wettstein, H. -R. 2003. Influence of sea level and vegetative stage of the pasture on cheese-making properties of cow milk. Proceedings of the Society of Nutrition Physiology 12: 87.Google Scholar
Nielsen, N. I., Ingvartsen, K. L. and Larsen, T. 2003. Diurnal variation and the effect of feed restriction on plasma and milk metabolites in TMR-fed dairy cows. Journal of Veterinary Medicine A 50: 8897.Google Scholar
Reist, M., Erdin, D., Euw, D. von, Tschuemperlin, K., Leuenberger, H., Chilliard, Y., Hammon, H. M., Morel, C., Philipona, C., Zbinden, Y., Kuenzi, N. and Blum, J. W. 2002. Estimation of energy balance at the individual and herd level using blood and milk traits in high-yielding dairy cows. Journal of Dairy Science 85: 33143327.CrossRefGoogle ScholarPubMed
Richardt, W., Jeroch, H. and Spilke, J. 2002. Fütterungs und nicht fütterungsbedingte Einflüsse auf den Milchharnstoffgehalt von Milchkühen. 3. Mitteilung: Vorschlag für ein dynamisches Modell zur Einschätzung der Rohproteinversorgung an Hand des Milchharnstoffgehaltes. Archiv für Tierzucht 45: 151157.Google Scholar
Station Federale de Recherches en Production Animále. 1999 [Feeding recommendations and nutrient tables for ruminants, fourth edition]. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland.Google Scholar
Statistical Analysis Systems Institute. 1996. SAS/STAT user’s guide: statistics, version 6·12, SAS Institute Inc., Cary, NC.Google Scholar
Trachsel, P., Busato, A. and Blum, J. W. 2000. Body conditions scores of dairy cattle in organic farms. Journal of Animal Physiology and Animal Nutrition 84: 112124.Google Scholar
Tschöp, M., Strasburger, C. J., Hartmann, G., Biollaz, J. and Bärtsch, P. 1998. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet 352: 11191120.Google Scholar
Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74: 35833597.Google Scholar
Windisch, W., Müller, H. L. and Kirchgessner, M. 1989. Stickstoffbilanz und Stickstoffverwertung bei der Milchkuh während und nach Energie- und Proteinmangel. 1.Mitteilung. Journal of Animal Physiology and Animal Nutrition 61: 206213.Google Scholar
Zemp, M., Blum, J. W., Leuenberger, H. and Künzi, N. 1989a. Influence of high altitude grazing on productive and physiological traits of dairy cows. II. Influence on hormones, metabolites and haematological parameters. Journal of Animal Breeding and Genetics 106: 289299.Google Scholar
Zemp, M., Leuenberger, H., Künzi, N. and Blum, J. W. 1989b. Influence of high altitude grazing on productive and physiological traits of dairy cows. I. Influence on milk production and body weight. Journal of Animal Breeding and Genetics 106: 278288.Google Scholar