Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T12:03:58.023Z Has data issue: false hasContentIssue false

Cloning, expression and tissue distribution of IGF-1 from giant panda (Ailuropoda melanoleuca)

Published online by Cambridge University Press:  09 March 2007

X. -L. Hu
Affiliation:
College of Life Sciences, Zhejiang University, Hangzhou 310058, China Geriatrics Institute, Zhejiang Hospital, Hangzhou 310013, China
M. -Y. Zhu*
Affiliation:
College of Life Sciences, Zhejiang University, Hangzhou 310058, China
Z. -H. Zhang
Affiliation:
Key Laboratory for Reproduction and Conservation Genetics of Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
R. Hou
Affiliation:
Key Laboratory for Reproduction and Conservation Genetics of Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
F. -J. Shen
Affiliation:
Key Laboratory for Reproduction and Conservation Genetics of Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
A. -J. Zhang
Affiliation:
Key Laboratory for Reproduction and Conservation Genetics of Endangered Wildlife of Sichuan Province, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
*
Corresponding author: E-mail: [email protected]
Get access

Abstract

Insulin-like growth factor-1 (IGF-1) is a polypeptide that regulate growth, differentiation and muscle regeneration in several species. This study was designed to analyse the cDNA sequence of IGF-1 in giant panda, its gene expression and tissue distributions in relation to growth, development and reproduction of captive giant pandas. A cDNA encoding IGF-1 was cloned by reverse transcriptase-PCR from a male giant panda cub liver tissue. Sequence alignment analysis showed the cysteine residues and other amino acid residues of the mature IGF-1 peptide of giant panda are highly conserved in mammalian species. DNA encoding the mature IGF-1 peptide of the giant panda was ligated with pET-DsbA expression vector and expressed in E. coli BL21. Western blot confirmed the IGF-1 antigen activity of the recombinant protein. By in situ hybridization and immunohistochemistry analysis it is demonstrated that the IGF-1 mRNA distribution abundance were significantly higher in the liver, muscles and heart than those in the other tissues studied. However, the IGF-1 peptide distribution abundances in all the tissues studied did not show any significant differences. The localization of the IGF-1 peptide was in accordance with that of mRNA for each tissue. These results may suggest that IGF-1 play an autocrine or paracrine rôle in regulation of the giant panda growth and development.

Type
Research Article
Copyright
Copyright © British Society of Animal Science 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albiston, A. L. and Herington, A. C. (1992) Tissue distribution and regulation of insulin-like growth factor (IGF)-binding protein-3 messenger ribonucleic acid (mRNA) in the rat: comparison with IGF-I mRNA expression. Endocrinology 130: 497502.CrossRefGoogle ScholarPubMed
Bardwell, J. C., McGovern, K. and Beckwith, J. (1991) Identification of a protein required for disulfide bond formation in vivo. Cell 67: 581589.CrossRefGoogle ScholarPubMed
Baumrucker, C. R. and Erondu, N. E. (2000) Insulin-like growth factor (IGF) system in the bovine mammary gland and milk. Journal of Mammary Gland Biology and Neoplasia 5: 5364.CrossRefGoogle ScholarPubMed
Belagaje, R. M., Reams, S. G., Ly, S. C. and Prouty, W. F. (1997) Increased production of low molecular weight recombinant proteins in Escherichia coli. Protein Science 6: 19531962.CrossRefGoogle ScholarPubMed
Boutinaud, M., Shand, J. H., Park, M. A., Phillips, K., Beattie, J., Flint, D. J. and Allan, G. J. (2004) A quantitative RT-PCR study of the mRNA expression profile of the IGF axis during mammary gland development. Journal of Molecular Endocrinology 33: 195207.CrossRefGoogle ScholarPubMed
Christoforidis, A., Maniadaki, I. and Stanhope, R. (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatric Endocrinology Reviews 3: 510.Google ScholarPubMed
Clemmons, D. R., Dehoff, M. L., Busby, W. H., Bayne, M. L. and Cascieri, M. A. (1992) Competition for binding to insulin-like growth factor (IGF) binding protein-2, 3, 4, and 5 by the IGFs and IGF analogs. Endocrinology 131: 890895.Google ScholarPubMed
Daughaday, W. H. and Rotwein, P. (1989) Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocrine Reviews 10: 6891.CrossRefGoogle ScholarPubMed
Duguay, S. J., Chan, S. J., Mommsen, T. P. and Steiner, D. F. (1995) Divergence of insulin-like growth factors I and II in the elasmobranch, Squalus acanthias. FEBS Letters> 371: 6972.CrossRefGoogle Scholar
Dunshea, F. R. and Van Barneveld, R. J. (2003) Colostrum protein isolate enhances gut development, growth performance and plasma IGF-I and II in neonatal pigs. Asia Pacific Journal of Clinical Nutrition 12: (suppl.)S40.Google Scholar
Feng, W. H. and Li, G. H. (2000). The saving of giant panda. Sichuan Publishing House of Science and Technology, Chengdu, China.Google Scholar
Feng, W. H., Wang, P. Y., Wu, C. R., Zhang, A. J., Ye, Z. Y., He, G. X., Xiong, G. C. and Zhang, S. R. (1991) Semen character study in the giant panda. In A study on breeding and disease of the giant panda (ed. Feng, W. H. and Zhang, A. J.), pp. 161170. Sichuan Publishing House of Science and Technology, Chengdu, China.Google Scholar
Glander, H. J., Kratzsch, J., Weisbrich, C. and Birkenmeier, G. (1996) Insulin-like growth factor-I and α 2 -macroglobulin in seminal plasma correlate with semen quality. Human Reproduction 11: 24542460.CrossRefGoogle ScholarPubMed
Heemskerk, V. H., Daemen, M. A. and Buurman, W. A. (1999) Insulin-like growth factor-1 (IGF-I) and growth hormone (GH) in immunity and inflammation. Cytokine and Growth Factor Reviews 10: 514.CrossRefGoogle Scholar
Henricks, D. M., Kouba, A. J., Lackey, B. R., Boone, W. R. and Gray, S. L. (1998) Identification of insulin-like growth factor i in bovine seminal plasma and its receptor on spermatozoa: influence on sperm motility. Biology of Reproduction 59: 330337.CrossRefGoogle ScholarPubMed
Hirai, M., Boersma, A., Hoeflich, A., Wolf, E., Foll, J., Aumuller, R. and Braun, J. (2001) Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): relation to fertility and seminal plasma growth factors. Journal of Andrology 22: 104110.CrossRefGoogle ScholarPubMed
Hober, S., Forsberg, G., Palm, G., Hartmanis, M. and Nilsson, B. (1992) Disulfide exchange folding of insulin-like growth factor-I. Biochemistry 31: 17491756.CrossRefGoogle ScholarPubMed
Hober, S., Hansson, A., Uhlen, M. and Nilsson, B. (1994) Folding of insulin-like growth factor I is thermodynamically controlled by insulin-like growth factor binding protein. Biochemistry 33: 67586761.CrossRefGoogle ScholarPubMed
Kulik, V. P., Kavsan, V. M., van Schaik, F. M., Nolten, L. A., Steenbergh, P. H. and Sussenbach, J. S. (1995) The promoter of the salmon insulin-like growth factor I gene is activated by hepatocyte nuclear factor. Journal of Biological and Chemistry 270: 10681073.CrossRefGoogle ScholarPubMed
Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.CrossRefGoogle ScholarPubMed
Li, Q. F. and Dai, A. G. (2004) Hypoxia inducible factor-1 alpha correlates the expression of heme oxygenase 1 gene in pulmonary arteries of rat with hypoxia-induced pulmonary hypertension. Acta Biochimica et Biophysica Sinica 36: 133140.CrossRefGoogle ScholarPubMed
Liao, M. J., Zhu, M. Y., Zhang, Z. H., Zhang, A. J., Li, G. H. and Sheng, F. J. (2003) Cloning and sequence analysis of FSH and LH in the giant panda (Ailuropoda melanoleuca). Animal Reproduction Science 77: 107116.CrossRefGoogle ScholarPubMed
McMurtry, J. P., Francis, G., Caperna, T., Vasilatos-Younken, R., Rosebrough, R. and Brocht, D. (1996a) Metabolic responses of the chicken to an intrave-nous injection of either chicken (cIGF-I) or human insulin-like growth factor-I (hIGF-I). Poultry Science 75: (suppl. 1) 47.Google Scholar
McMurtry, J. P., Francis, G. L., Upton, Z., Walton, P. E., Rosselot, G., Caperna, T. J. and Brocht, D. M. 1996b. Plasma clearance and tissue distribution labeled chicken and human IGF-I and IGF-II in the chicken. Journal of Endocrinology 50: 149161.CrossRefGoogle Scholar
Macpherson, M. L., Simmen, R. C. M., Simmen, F. A., Hernandez, J., Sheerin, B. R., Varner, D. D., Loomis, P., Cadario, M. E., Miller, C. D., Brinsko, S.P., Rigby, S. and Blanchard, T.L. 2002. Insulin-like growth factor-i and insulin-like growth factor binding protein-2 and -5 in equine seminal plasma: association with sperm characteristics and fertility. Biology of Reproduction 67: 648654.CrossRefGoogle ScholarPubMed
Magee, B. A., Shooter, G. K., Wallace, J. C. and Francis, G. L. 1999. Insulin-like growth factor I and its binding proteins: a study of the binding interface using B-domain analogues. Biochemistry 38: 1586315870.CrossRefGoogle ScholarPubMed
Martin, J. L., Bardwell, J. C. and Kuriyan, J. 1993. Crystal structure of the DsbA protein required for disulphide bond for formation in vivo. Nature 365: 464468.CrossRefGoogle ScholarPubMed
Miller, J. A., Narhi, L. O., Hua, Q. X., Rosenfeld, R., Arakawa, T., Rohde, M., Prestrelski, S., Lauren, S., Stoney, K. S. and Tsai, L. 1993. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: a bifurcating protein-folding pathway. Biochemistry 32: 52035213.CrossRefGoogle ScholarPubMed
Nagaoka, I., Someya, A., Iwabuchi, K. and Yamashita, T. 1991. Expression of insulin-like growth factor-IA and factor-IB mRNA in human liver, hepatoma cells, macrophage-like cells and fibroblasts. FEBS Letter 280: 7983.CrossRefGoogle Scholar
Oropeza, A., Wrenzycki, C., Herrmann, D., Hadeler, K. G. and Niemann, H. 2004. Improvement of the developmental capacity of oocytes from prepubertal cattle by intraovarian insulin-like growth factor-I application. Biology of Reproduction 70: 16341643.CrossRefGoogle ScholarPubMed
Otte, K., Rozell, B., Gessbo, A. and Engstrom, W. 1996. Cloning and sequencing of an equine insulin-like growth factor I cDNA and its expression in fetal and adult tissues. General and Comparative Endocrinology 102: 1115.CrossRefGoogle ScholarPubMed
Rinderkncht, E. and Humbel, R. E. 1978. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. Journal of Biology and Chemistry 253: 27692776.CrossRefGoogle Scholar
Rosen, C. J. and Pollak, M. 1999. Circulating IGF-I: new perspectives for a new century. Trends in Endocrinology and Metabolism 10: 136141.CrossRefGoogle ScholarPubMed
Shimoda, N., Tashiro, T., Yamamori, H., Takagi, K., Nakajima, N. and Ito, I. 1997. Effects of growth hormone and insulin-like growth factor-1 on protein metabolism, gut morphology, and cell-mediated immunity in burned rats. Nutrition 13: 540546.CrossRefGoogle ScholarPubMed
Skarsgard, E. D., Amii, L. A., Dimmitt, R. A., Sakamoto, G., Brindle, M. E. and Moss, R. L. 2001. Fetal therapy with rhIIGF-1IGF-I in a rabbit model of intrauterine growth retardation. Journal of Surgical Research 99: 142146.CrossRefGoogle Scholar
Statistical Packages for the Social Sciences. 2004. SPSS user's guide version 13.0 package. SPSS Inc., Chicago, IL.Google Scholar
Wang, Y., Price, S. E. and Jiang, H. 2003. Cloning and characterization of the bovine class 1 and class 2 insulin-like growth factor-I mRNAs. Domestic Animal Endocrinology 25: 315328.CrossRefGoogle ScholarPubMed
Xu, R. J. 1996. Development of the newborn GI tract and its relation to colostrum/milk intake: a review. Reproduction, Fertility and Development 8: 3548.CrossRefGoogle ScholarPubMed
Zhang, H. M., Wang, P. Y., Zhang, Q. G., Li, D. S., Wei, R. P., Tang, C. X., Zhou, X. P., Huang, Y. and Chen, L. Q. 2003. The standard condition of artificial feeding the giant panda. In Study on reproduction of giant panda (ed. Zhang, H. M. and Wang, P. Y.), pp. 9799. China Forestry Publishing House, Beijing, China.Google Scholar
Zhang, Y., Olsen, D. R., Nguyen, K. B., Olson, P. S., Rhodes, E. T. and Mascarenhas, D. 1998, Expression of eukaryotic proteins in soluble form in Escherichia coli. Protein Expression and Purification 12: 159165.CrossRefGoogle ScholarPubMed
Zheng, W. D., Quan, H., Song, J. L., Yang, S. L. and Wang, C. C. 1997. Does DsbA have chaperone-like activity? Archives of Biochemistry and Biophysics 337: 326331.CrossRefGoogle ScholarPubMed