Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-02T00:36:52.291Z Has data issue: false hasContentIssue false

Calves sucking colostrum and milk from their dams or from an automatic feeding station starting in the neonatal period: metabolic and endocrine traits and growth performance

Published online by Cambridge University Press:  18 August 2016

G. Schiessler
Affiliation:
Division of Animal Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Faculty of Veterinary Medicine, University of Berne, CH-3012 Berne, Switzerland
A. Nussbaum
Affiliation:
Division of Animal Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Faculty of Veterinary Medicine, University of Berne, CH-3012 Berne, Switzerland
H. M. Hammon
Affiliation:
Division of Animal Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Faculty of Veterinary Medicine, University of Berne, CH-3012 Berne, Switzerland
J. W. Blum*
Affiliation:
Division of Animal Nutrition and Physiology, Institute of Animal Genetics, Nutrition and Housing, Faculty of Veterinary Medicine, University of Berne, CH-3012 Berne, Switzerland
*
Corresponding author E-mail:[email protected]
Get access

Abstract

Metabolic and endocrine traits and growth performance from birth up to day 28 in calves sucking colostrum and milk at a computer-programmed automatic feeding station (GrA, no. = 7) were compared with calves sucking their dams (GrS, no. = 7). Body weight tended to be higher on day 28 in GrS than in GrA (74 (s.e. 4) and 70 (s.e. 2) kg, respectively; P 0·1), but not weight gain from 0 to 28 days. Intakes in GrA increased from days 1 to 4 and then remained at 11·1 (s.e. 1·0) l/day. From days 2 to 11 calves visited the automatic feeding station 9 (s.e. 1) times per day. Plasma concentrations of urea (days 3 and 21), glucagon (day 3) and growth hormone (day 3) were higher in GrA than in GrS (P < 0·05), whereas plasma concentrations of total protein (days 1 to 28), immunoglobulin G (days 1 to 28), albumin (days 1 to 14), glucose (day 3), lactate (days 1 and 28), triglycerides (day 3), cholesterol (days 21 and 28), insulin (day 3), and insulin-like growth factor-1 (day 21) were lower in GrA than in GrS (P < 0·05). Metabolic and endocrine group differences were mainly seen in week 1. However, growth performance during the first 3 weeks of life was comparable in calves of the two groups but resulted in slightly enhanced body weight (by 4 ± 3·5 kg) at the end of the 1st month of life in GrS.

Type
Growth, development and meat science
Copyright
Copyright © British Society of Animal Science 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bar-Peled, U., Robinzon, B., Maltz, E., Tagari, H., Folman, Y., Bruckental, I., Voet, H., Gacitua, H. and Lehrer, A. R. 1997. Increased weight gain and effects on production parameters of Holstein heifer calves that were allowed to suckle from birth to six weeks of age. Journal of Dairy Science 80: 25232528.Google Scholar
Baumrucker, C. R. and Blum, J. W. 1994. Effects of dietary recombinant human insulin-like growth factor-I on concentrations of hormones and growth factors in the blood of newborn calves. Journal of Endocrinology 140: 1521.Google Scholar
Blum, J. W., Hadorn, U., Sallmann, H.-P. and Schuep, W. 1997. Delaying colostrum intake by one day impairs plasma lipid, essential fatty acid, carotene, retinol and α-tocopherol status in neonatal calves. Journal of Nutrition 127: 20242029.Google Scholar
Blum, J. W. and Hammon, H. 1999. Endocrine and metabolic aspects in milk-fed calves. Domestic Animal Endocrinology 17: 219230.Google Scholar
Blum, J. W. and Hammon, H. 2000. Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livestock Production Science 66: 151159.Google Scholar
Breier, B. H. and Sauerwein, H. 1995. Regulation of growth in ruminants by the somatotropic axis. In Ruminant physiology: digestion, metabolism, growth and reproduction (ed. von, W. S., Engelhardt Breves, Leonhard-Marek G. and Giesecke, D.), pp. 451474. Enke Verlag, Stuttgart, Germany.Google Scholar
Campana, W. M. and Baumrucker, C. R. 1995. Hormones and growth factors in bovine milk. In Handbook of milk composition (ed Jensen, R. G.), pp. 476494. Academic Press, San Diego, CA.Google Scholar
Cordano, P., Hammon, H. M., Morel, C., Zurbriggen, A. and Blum, J. W. 2000. mRNA of insulin-like growth factor (IGF) quantification and presence of IGF binding proteins, and receptors for growth hormone, IGF-I and insulin, determined by reverse transcribed polymerase chain reaction, in the liver of growing and mature male cattle. Domestic Animal Endocrinology 19: 191208.Google Scholar
Coxam, V., Davicco, M.-J. and Barlet, J.-P. 1989. Effect of triglycerides on growth hormone (GH)-releasing factor-mediated GH secretion in newborn calves. Domestic Animal Endocrinology 6: 389393.Google Scholar
Day, M. L., Imakawa, K., Clutter, A. C., Wolfe, P. L., Zalesky, D. D., Nielsen, M. K. and Kinder, J. E. 1987. Suckling behavior of calves with dams varying in milk production. Journal of Animal Science 65: 12071212.Google Scholar
Egger, I. and Kessler, J. 1994. Fütterungsempfehlungen für das Aufzuchtkalb. In Fütterungsempfehlungen und Nährwerttabellen für Wiederkäuer (ed. Eidgenössische Forschungsanstalt für viehwirtschaftliche Produktion), pp. 5168. Landwirtschaftliche Lehrmittelzentrale, Zollikofen, Switzerland.Google Scholar
Egli, C. P. and Blum, J. W. 1998. Clinical, haematological, metabolic and endocrine traits during the first three months of life of suckling Simmentaler calves held in a cow-calf operation. Journal of Veterinary Medicine A 45: 99118.Google Scholar
Erhard, M. H., Lösch, U. and Stangassinger, M. 1995. Untersuchungen zur intestinalen Absorption von homologem und heterologem Immunglobulin G bei neugeborenen Kälbern. Zeitschrift für Ernährungswissenschaft 34: 160163.Google Scholar
Ferré, P., Decaux, J.-F., Issad, T. and Girard, J. 1986. Changes in energy metabolism during the suckling and weaning period in the newborn. Reproduction, Nutrition, Développement 26: 619631.Google Scholar
Gallasz, E., Jans, F. and Schneeberger, H. 1973. Fütterungstechnische Betrachtungen zur Verwendung von Tr änkeautomaten in der Kälbermast und Kälberaufzucht. Mitteilungen für die Schweizerische Landwirtschaft 21: 139147.Google Scholar
Girard, J. 1986. Gluconeogenesis in late fetal and early neonatal life. Biology of the Neonate 50: 237258.Google Scholar
Grongnet, J. F., Grongnet-Pinchon, E. and Witowski, A. 1985. Neonatal levels of plasma thyroxine in male and female calves fed a colostrum or immunoglobulin diet or fasted for the first 28 hours of life. Reproduction, Nutrition, Développement 25: 537543.Google Scholar
Hadorn, U., Hammon, H., Bruckmaier, R. M. and Blum, J. W. 1997. Delaying colostrum intake by one day has important effects on metabolic traits and on gastrointestinal and metabolic hormones in neonatal calves. Journal of Nutrition 127: 20112023.Google Scholar
Hammon, H. and Blum, J. W. 1997. The somatotropic axis in neonatal calves can be modulated by nutrition, growth hormone, and long-R3-IGF-I. American Journal of Physiology 273: E130E138.Google Scholar
Hammon, H. and Blum, J. W. 1998. Metabolic and endocrine traits of neonatal calves are influenced by feeding colostrum for different durations or only milk replacer. Journal of Nutrition 128: 624632.Google Scholar
Jones, J. I. and Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins. Biological actions. Endocrine Reviews 16: 334.Google Scholar
Kaufhold, J. N., Hammon, H. M., Bruckmaier, R. M., Breier, B. H. and Blum, J. W. 2000. Postprandial metabolism and endocrine status in veal calves fed at different feeding frequencies. Journal of Dairy Science 83: 24802490.Google Scholar
Kerr, D. E., Laarveld, B., Fehr, M. I. and Manns, J. G. 1991. Profiles of serum IGF-I concentrations in calves from birth to 18 months of age and in cows throughout the lactation cycle. Canadian Journal of Animal Science 71: 695705.Google Scholar
Kirchgessner, M. 1996. Tierernährung, ninth edition. DLG-Verlag, Frankfurt (Main), Germany.Google Scholar
Kühne, S., Hammon, H. M., Bruckmaier, R. M., Morel, C., Zbinden, Y. and Blum, J. W. 2000. Growth performance, metabolic and endocrine traits, and absorptive capacity in neonatal calves fed either colostrum or milk replacer at two levels. Journal of Animal Science 78: 609620.Google Scholar
Leat, W. M. F. 1967. Plasma lipids of newborn and adult ruminants and of lambs from birth to weaning. Journal of Agricultural Science, Cambridge 69: 241246.Google Scholar
Le Neindre, P. 1992. The effects of husbandry and breed on mother-young relationships in cattle. Proceedings of the eighth international conference on production diseases of farm animals (ed. Blum, J. W. Martig, J. and Gaillard, C.), pp. 329347. University of Berne, Switzerland.Google Scholar
Lidfors, L. M., Jensen, P. and Algers, B. 1994. Suckling in free-ranging beef cattle — temporal patterning of suckling bouts and effects of age and sex. Ethology 98: 321332.Google Scholar
Lindt, F. and Blum, J. W. 1994a. Growth performance, erythroid traits, meat variables and effects of treadmill and transport stress in veal calves supplied different amounts of iron. Journal of Veterinary Medicine. Series A 41: 333342.Google Scholar
Lindt, F. and Blum, J. W. 1994b. Occurrence of iron deficiency in growing cattle. Journal of Veterinary Medicine. Series A 41: 237246.Google Scholar
Merriam, G. R. and Wachter, K. W. 1982. Algorithms for the study of episodic hormone secretion. American Journal of Physiology 243: E310E318.Google Scholar
Morin, D. E., McCoy, G. C. and Hurley, W. L. 1997. Effects of quality, quantity, and timing of colostrum feeding and addition of a dried colostrum supplement on immunoglobulin G1 absorption in Holstein bull calves. Journal of Dairy Science 80: 747753.CrossRefGoogle ScholarPubMed
Moser, M., Bruckmaier, R. M. and Blum, J. W. 1994. Iron status, erythropoiesis, meat colour, health status and growth performance of veal calves held on and fed straw. Journal of Veterinary Medicine. Series A 41: 343358.Google Scholar
Muoio, D. M., Dohm, G. L., Fiedorek, F. T., Tapscott, E. M., Coleman, R. A. and Dohn G. L. 1997. Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46: 13601363.Google Scholar
Odde, K. G., Kiracofe, G. H. and Schallers, R. R. 1985. Suckling behavior in range beef calves. Journal of Animal Science 61: 307309.Google Scholar
Odle, J., Zijlstra, R. T. and Donovan, S. M. 1996. Intestinal effects of milkborne growth factors in neonates of agricultural importance. Journal of Animal Science 74: 25092522.Google Scholar
Rauprich, A. B. E., Hammon, H. M. and Blum, J. W. 2000a. Effects of feeding colostrum and a formula with nutrient contents as colostrum on growth performance, health status, and metabolic and endocrine traits in neonatal calves. Biology of the Neonate 78: 5364.Google Scholar
Rauprich, A. B. E., Hammon, H. M. and Blum, J. W. 2000b. Influence of feeding different amounts of first colostrum on metabolic, endocrine, and health status, and on growth performance in neonatal calves. Journal of Animal Science 78: 896908.Google Scholar
Riese, G., Klee, G. and Sambraus, H. H. 1977. Das Verhalten von Kälbern in verschiedenen Haltungsformen. Deutsche Tierärztliche Wochenschrift 84: 388394.Google Scholar
Ronge, H. and Blum, J. W. 1988. Somatomedin C and other hormones in dairy cows around parturition, in newborn calves and in milk. Journal of Animal Physiology and Animal Nutrition 60: 168176.Google Scholar
Senn, M., Gross-Lüem, S., Leuenberger, H. and Langhans, W. 2000. Meal patterns and meal-induced metabolic changes in calves fed milk ad lib. Physiology and Behavior 70: 189195.Google Scholar
Shell, T. M., Early, R. J., Carpenter, J. R. and Buckley, B. A. 1995. Prepartum nutrition and solar radiation in beef cattle. II. Residual effects on postpartum milk yield, immunoglobulin, and calf growth. Journal of Animal Science 73: 13031309.Google Scholar
Slebodzinski, A. 1994. Endokrinologie des Neugeborenen. In Veterinäredizinische Endokrinologie (ed. Döcke, F.), pp. 594608. G. Fischer Verlag, Jena, Germany.Google Scholar
Statistical Analysis Systems Institute. 1996. SAS/STAT© user’s guide (release 6. 12). Statistical Analysis Systems Institute Inc., Cary, NC.Google Scholar
Steinhardt, M. and Thielscher, H.-H. 2000. Tiergerechte Haltung und physiologische Funktionen von Tieren. Tierärztliche Umschau 55: 189198.Google Scholar
Steinhardt, M., Thielscher, H.-H., Bönner, S., Ladewig, J. and Smidt, D. 1995. Untersuchungen zur Milchaufnahme der Saugkälber in einer Mutterkuhherde aus Vertretern der DRB, DSB und der F1 Galloway ✕ Holstein Friesian. Landbauforschung Völkenrode 45: 3037.Google Scholar
Stott, G. H., Marx, D. B., Menefee, B. E. and Nightengale, G. T. 1979. Colostral immunoglubulin transfer in calves. I V. Effects of suckling. Journal of Dairy Science 62: 19081913.Google Scholar
Thissen, J.-P., Ketelslegers, J.-M. and Underwood, L. E. 1994. Nutritional regulation of insulin-like growth factors. Endocrine Reviews 15: 80101.Google Scholar
Wyss, U. 1989. Der Einsatz von Vollmilch in der Kälbermast. Die Grüne 38: 2223.Google Scholar
Xu, R.-J. 1996. Development of the newborn GI tract and its relation to colostrum/milk intake: a review. Reproduction, Fertility, Development 8: 3548.Google Scholar
Zimmerli, U. V. and Blum, J. W. 1990. Acute and longterm metabolic, endocrine, respiratory, cardiac and skeletal muscle activity changes in response to perorally administered beta-adrenoceptor agonists in calves. Journal of Animal Physiology and Animal Nutrition 63: 157–172.Google Scholar